IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04325638.html
   My bibliography  Save this paper

Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations

Author

Listed:
  • Shivam Gupta

    (NEOMA - Neoma Business School)

  • Sachin Modgil

    (IMI Kolkata - International Management Institute)

  • Ajay Kumar

    (EM - EMLyon Business School)

  • Uthayasankar Sivarajah

    (University of Bradford)

  • Zahir Irani

    (University of Bradford)

Abstract

"Natural disasters are often unpredictable and therefore there is a need for quick and effective response to save lives and infrastructure. Hence, this study is aimed at achieving timely, anticipated and effective response throughout the cycle of a disaster, extreme weather and emergency operations management with the help of advanced technologies. This study proposes a novel, evidence-based framework (4-AIDE) that highlights the role of artificial intelligence (AI) and cloud-based collaborative platforms in disaster, extreme weather and emergency situations. A qualitative approach underpinned by organizational information processing theory (OIPT) is employed to design, develop and conduct semi-structured interviews with 33 respondents having experience in AI and cloud computing industries during emergency and extreme weather situations. For analysing the collected data, axial, open and selective coding is used that further develop themes, propositions and an evidence-based framework. The study findings indicate that AI and cloud-based collaborative platforms offer a structured and logical approach to enable two-way, algorithm-based communication to collect, analyse and design effective management strategies for disaster and extreme weather situations. Managers of public systems or businesses can collect and analyse data to predict possible outcomes and take necessary actions in an extreme weather situation. Communities and societies can be more resilient by transmitting and receiving data to AI and cloud-based collaborative platforms. These actions can also help policymakers identify critical pockets and guide administration for their necessary preparation for unexpected, extreme weather, and emergency events."

Suggested Citation

  • Shivam Gupta & Sachin Modgil & Ajay Kumar & Uthayasankar Sivarajah & Zahir Irani, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," Post-Print hal-04325638, HAL.
  • Handle: RePEc:hal:journl:hal-04325638
    DOI: 10.1016/j.ijpe.2022.108642
    Note: View the original document on HAL open archive server: https://hal.science/hal-04325638v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04325638v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allen Lai & Jingwei He & Teck Tan & Kai Phua, 2009. "A Proposed ASEAN Disaster Response, Training and Logistic Centre Enhancing Regional Governance in Disaster Management," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 16(2), pages 299-315, June.
    2. Fan, Chao & Zhang, Cheng & Yahja, Alex & Mostafavi, Ali, 2021. "Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management," International Journal of Information Management, Elsevier, vol. 56(C).
    3. Lijo John & Anand Gurumurthy & Gunjan Soni & Vipul Jain, 2019. "Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: a case of Chennai flood relief," Annals of Operations Research, Springer, vol. 283(1), pages 1227-1258, December.
    4. Jennifer Rowley, 2012. "Conducting research interviews," Management Research Review, Emerald Group Publishing Limited, vol. 35(3/4), pages 260-271, March.
    5. Lee, Seung-Yup & Chinnam, Ratna Babu & Dalkiran, Evrim & Krupp, Seth & Nauss, Michael, 2021. "Proactive coordination of inpatient bed management to reduce emergency department patient boarding," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Rameshwar Dubey & Angappa Gunasekaran & David J. Bryde & Yogesh K. Dwivedi & Thanos Papadopoulos, 2020. "Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3381-3398, June.
    7. Mahmud Akhter Shareef & Yogesh K. Dwivedi & Rafeed Mahmud & Angela Wright & Mohammad Mahboob Rahman & Hatice Kizgin & Nripendra P. Rana, 2019. "Disaster management in Bangladesh: developing an effective emergency supply chain network," Annals of Operations Research, Springer, vol. 283(1), pages 1463-1487, December.
    8. Nitesh Bharosa & JinKyu Lee & Marijn Janssen, 2010. "Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises," Information Systems Frontiers, Springer, vol. 12(1), pages 49-65, March.
    9. Cao, Cejun & Liu, Yang & Tang, Ou & Gao, Xuehong, 2021. "A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains," International Journal of Production Economics, Elsevier, vol. 235(C).
    10. Marta Poblet & Esteban García-Cuesta & Pompeu Casanovas, 2018. "Crowdsourcing roles, methods and tools for data-intensive disaster management," Information Systems Frontiers, Springer, vol. 20(6), pages 1363-1379, December.
    11. Iana Shaheen & Arash Azadegan, 2020. "Friends or Colleagues? Communal and Exchange Relationships During stages of Humanitarian Relief," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2828-2850, December.
    12. Akash Sinha & Prabhat Kumar & Nripendra P. Rana & Rubina Islam & Yogesh K. Dwivedi, 2019. "Impact of internet of things (IoT) in disaster management: a task-technology fit perspective," Annals of Operations Research, Springer, vol. 283(1), pages 759-794, December.
    13. Michael Siegrist & Heinz Gutscher, 2008. "Natural Hazards and Motivation for Mitigation Behavior: People Cannot Predict the Affect Evoked by a Severe Flood," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 771-778, June.
    14. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    15. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    16. Kunz, Nathan & Reiner, Gerald & Gold, Stefan, 2014. "Investing in disaster management capabilities versus pre-positioning inventory: A new approach to disaster preparedness," International Journal of Production Economics, Elsevier, vol. 157(C), pages 261-272.
    17. Monique M. Kuglitsch & Ivanka Pelivan & Serena Ceola & Mythili Menon & Elena Xoplaki, 2022. "Facilitating adoption of AI in natural disaster management through collaboration," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    18. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Kavota, Jérémie Katembo & Kamdjoug, Jean Robert Kala & Wamba, Samuel Fosso, 2020. "Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo," International Journal of Information Management, Elsevier, vol. 52(C).
    21. Cho, Jaeyoung & Lim, Gino J. & Kim, Seon Jin & Biobaku, Taofeek, 2018. "Liquefied natural gas inventory routing problem under uncertain weather conditions," International Journal of Production Economics, Elsevier, vol. 204(C), pages 18-29.
    22. Moshtari, Mohammad & Altay, Nezih & Heikkilä, Jussi & Gonçalves, Paulo, 2021. "Procurement in humanitarian organizations: Body of knowledge and practitioner's challenges," International Journal of Production Economics, Elsevier, vol. 233(C).
    23. Rahimi-Ghahroodi, S. & Al Hanbali, A. & Zijm, W.H.M. & Timmer, J.B., 2020. "Multi-resource emergency supply contracts with asymmetric information in the after-sales services," International Journal of Production Economics, Elsevier, vol. 229(C).
    24. Jamal Al Qundus & Kosai Dabbour & Shivam Gupta & Régis Meissonier & Adrian Paschke, 2020. "Wireless sensor network for AI-based flood disaster detection," Post-Print hal-02914016, HAL.
    25. Nishtha Malik & Shalini Nath Tripathi & Arpan Kumar Kar & Shivam Gupta, 2021. "Impact of artificial intelligence on employees working in industry 4.0 led organizations," International Journal of Manpower, Emerald Group Publishing Limited, vol. 43(2), pages 334-354, June.
    26. Vasileios Kosmas & Michele Acciaro & Maria Besiou, 2022. "Saving migrants’ lives at sea: Improving search and rescue operations," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1872-1889, April.
    27. Keleş, Büşra & Gómez-Acevedo, Patricia & Shaikh, Nazrul I., 2018. "The impact of systematic changes in weather on the supply and demand of beverages," International Journal of Production Economics, Elsevier, vol. 195(C), pages 186-197.
    28. Fernandez Pernett, Stephanie & Amaya, Johanna & Arellana, Julián & Cantillo, Victor, 2022. "Questioning the implication of the utility-maximization assumption for the estimation of deprivation cost functions after disasters," International Journal of Production Economics, Elsevier, vol. 247(C).
    29. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    30. Campbell, Colin & Sands, Sean & Ferraro, Carla & Tsao, Hsiu-Yuan (Jody) & Mavrommatis, Alexis, 2020. "From data to action: How marketers can leverage AI," Business Horizons, Elsevier, vol. 63(2), pages 227-243.
    31. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bag, Surajit & Rahman, Muhammad Sabbir & Srivastava, Gautam & Giannakis, Mihalis & Foropon, Cyril, 2023. "Data-driven digital transformation and the implications for antifragility in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Liang, Chen & Zhu, Minghao & Lee, Peter K.C. & Cheng, T.C.E. & Yeung, Andy C.L., 2024. "Combating extreme weather through operations management: Evidence from a natural experiment in China," International Journal of Production Economics, Elsevier, vol. 267(C).
    3. Jiang, Jiehui & Ma, Jie & Chen, Xiaojing, 2024. "Multi-regional collaborative mechanisms in emergency resource reserve and pre-dispatch design," International Journal of Production Economics, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Shivam & Modgil, Sachin & Kumar, Ajay & Sivarajah, Uthayasankar & Irani, Zahir, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," International Journal of Production Economics, Elsevier, vol. 254(C).
    2. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    5. Jamal Al Qundus & Kosai Dabbour & Shivam Gupta & Régis Meissonier & Adrian Paschke, 2022. "Wireless sensor network for AI-based flood disaster detection," Annals of Operations Research, Springer, vol. 319(1), pages 697-719, December.
    6. Paula Camargo Fiorini & Charbel Jose Chiappetta Jabbour & Ana Beatriz Lopes de Sousa Jabbour & Gary Ramsden, 2022. "The human side of humanitarian supply chains: a research agenda and systematization framework," Annals of Operations Research, Springer, vol. 319(1), pages 911-936, December.
    7. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    8. Carlos Galera-Zarco & Goulielmos Floros, 2024. "A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making," Annals of Operations Research, Springer, vol. 339(1), pages 573-612, August.
    9. Mahmud A. Shareef & Yogesh K. Dwivedi & Vinod Kumar & D. Laurie Hughes & Ramakrishnan Raman, 2022. "Sustainable supply chain for disaster management: structural dynamics and disruptive risks," Annals of Operations Research, Springer, vol. 319(1), pages 1451-1475, December.
    10. Surajit Bag & Shivam Gupta & Lincoln Wood, 2022. "Big data analytics in sustainable humanitarian supply chain: barriers and their interactions," Annals of Operations Research, Springer, vol. 319(1), pages 721-760, December.
    11. Guo Fuli & Cyril Foropon & Ma Xin, 2022. "Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination," Annals of Operations Research, Springer, vol. 319(1), pages 355-377, December.
    12. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    13. Fan, Yu & Shao, Jianfang & Wang, Xihui & Liang, Liang, 2024. "Contract design between relief organisations and private-sector vendors: A humanitarian logistics framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    14. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    15. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    16. Christian Wankmüller & Gerald Reiner, 2021. "Identifying Challenges and Improvement Approaches for More Efficient Procurement Coordination in Relief Supply Chains," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    17. Martijn Warnier & Vincent Alkema & Tina Comes & Bartel Walle, 2020. "Humanitarian access, interrupted: dynamic near real-time network analytics and mapping for reaching communities in disaster-affected countries," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 815-834, September.
    18. Deepa Mishra & Sameer Kumar & Elkafi Hassini, 2019. "Current trends in disaster management simulation modelling research," Annals of Operations Research, Springer, vol. 283(1), pages 1387-1411, December.
    19. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    20. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.

    More about this item

    Keywords

    Artificial intelligence; Cloud technologies; Disaster management; Extreme weather; Organizational information processing theory;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04325638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.