IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v56y2021ics0268401219302956.html
   My bibliography  Save this article

Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management

Author

Listed:
  • Fan, Chao
  • Zhang, Cheng
  • Yahja, Alex
  • Mostafavi, Ali

Abstract

This paper presents a vision for a Disaster City Digital Twin paradigm that can: (i) enable interdisciplinary convergence in the field of crisis informatics and information and communication technology (ICT) in disaster management; (ii) integrate artificial intelligence (AI) algorithms and approaches to improve situation assessment, decision making, and coordination among various stakeholders; and (iii) enable increased visibility into network dynamics of complex disaster management and humanitarian actions. The number of humanitarian relief actions is growing due to the increased frequency of natural and man-made crises. Various streams of research across different disciplines have focused on ICT and AI solutions for enhancing disaster management processes. However, most of the existing research is fragmented without a common vision towards a converging paradigm. Recognizing this, this paper presents the Disaster City Digital Twin as a unifying paradigm. The four main components of the proposed Digital Twin paradigm include: multi-data sensing for data collection, data integration and analytics, multi-actor game-theoretic decision making, and dynamic network analysis. For each component, the current state of the art related to AI methods and approaches are examined and gaps are identified.

Suggested Citation

  • Fan, Chao & Zhang, Cheng & Yahja, Alex & Mostafavi, Ali, 2021. "Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management," International Journal of Information Management, Elsevier, vol. 56(C).
  • Handle: RePEc:eee:ininma:v:56:y:2021:i:c:s0268401219302956
    DOI: 10.1016/j.ijinfomgt.2019.102049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401219302956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.102049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivam Gupta & Sachin Modgil & Ajay Kumar & Uthayasankar Sivarajah & Zahir Irani, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," Post-Print hal-04325638, HAL.
    2. Dubey, Rameshwar & Bryde, David J. & Dwivedi, Yogesh K. & Graham, Gary & Foropon, Cyril, 2022. "Impact of artificial intelligence-driven big data analytics culture on agility and resilience in humanitarian supply chain: A practice-based view," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Batel Yossef Ravid & Meirav Aharon-Gutman, 2023. "The Social Digital Twin:The Social Turn in the Field of Smart CitiesÂ," Environment and Planning B, , vol. 50(6), pages 1455-1470, July.
    4. Gupta, Shivam & Modgil, Sachin & Kumar, Ajay & Sivarajah, Uthayasankar & Irani, Zahir, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," International Journal of Production Economics, Elsevier, vol. 254(C).
    5. Dhar, Suparna & Tarafdar, Pratik & Bose, Indranil, 2022. "Understanding the evolution of an emerging technological paradigm and its impact: The case of Digital Twin," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:56:y:2021:i:c:s0268401219302956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.