IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i1d10.1007_s10479-020-03790-7.html
   My bibliography  Save this article

Big data analytics in sustainable humanitarian supply chain: barriers and their interactions

Author

Listed:
  • Surajit Bag

    (University of Johannesburg)

  • Shivam Gupta

    (NEOMA Business School)

  • Lincoln Wood

    (University of Otago)

Abstract

Big data analytics research in humanitarian supply chain management has gained popularity for its ability to manage risks. While big data analytics can predict future events, it can also concentrate on current events and support preparation for future events. Big data analytics-driven approaches in humanitarian supply chain management are complicated due to the presence of multiple barriers. The current study aims to identify the leading barriers; further categorize them and finally develop the contextual interrelationships using the Fuzzy Total Interpretive Structural Modeling (TISM) approach. Sustainable humanitarian supply chain management research is in nascent stage and therefore, Fuzzy TISM is used in this study for theory building purpose and answering three key questions-what, how and why. Fuzzy TISM shows some key transitive links which provides enhanced explanatory framework. The TISM model shows that the fifteen barriers achieved eight levels and decision-makers must aim to remove the foundational barriers to apply big data analytics in sustainable humanitarian supply chain management. Fuzzy TISM were synthesized to develop a conceptual model and this was statistically validated considering a sample of 108 responses from African based humanitarian organizations. Findings suggest that organizational focus is required on implementing modern management practices; second, more emphasis is required on infrastructure development and lastly, improvement is required on quality of information sharing as these variables can influence sustainable humanitarian supply chain management. Finally, the conclusions and future research directions were outlined which may help stakeholders in sustainable humanitarian supply chain management to eliminate the BDA barriers.

Suggested Citation

  • Surajit Bag & Shivam Gupta & Lincoln Wood, 2022. "Big data analytics in sustainable humanitarian supply chain: barriers and their interactions," Annals of Operations Research, Springer, vol. 319(1), pages 721-760, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:1:d:10.1007_s10479-020-03790-7
    DOI: 10.1007/s10479-020-03790-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03790-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03790-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armstrong, J. Scott & Overton, Terry S., 1977. "Estimating Nonresponse Bias in Mail Surveys," MPRA Paper 81694, University Library of Munich, Germany.
    2. Thanos Papadopoulos & Angappa Gunasekaran & Rameshwar Dubey & Samuel Fosso Wamba, 2017. "Big data and analytics in operations and supply chain management: managerial aspects and practical challenges," Post-Print hal-02279562, HAL.
    3. Gang Wang & Angappa Gunasekaran & Eric W. T. Ngai, 2018. "Distribution network design with big data: model and analysis," Annals of Operations Research, Springer, vol. 270(1), pages 539-551, November.
    4. Barbara Flynn & Mark Pagell & Brian Fugate, 2018. "Editorial: Survey Research Design in Supply Chain Management: The Need for Evolution in Our Expectations," Journal of Supply Chain Management, Institute for Supply Management, vol. 54(1), pages 1-15, January.
    5. Alharthi, Abdulkhaliq & Krotov, Vlad & Bowman, Michael, 2017. "Addressing barriers to big data," Business Horizons, Elsevier, vol. 60(3), pages 285-292.
    6. Sameer Prasad & Rimi Zakaria & Nezih Altay, 2018. "Big data in humanitarian supply chain networks: a resource dependence perspective," Annals of Operations Research, Springer, vol. 270(1), pages 383-413, November.
    7. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    8. Shivam Gupta & Nezih Altay & Zongwei Luo, 2019. "Big data in humanitarian supply chain management: a review and further research directions," Annals of Operations Research, Springer, vol. 283(1), pages 1153-1173, December.
    9. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02312250, HAL.
    10. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    11. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    12. Daniel A. Griffith & Bradley Boehmke & Randy V. Bradley & Benjamin T. Hazen & Alan W. Johnson, 2019. "Embedded analytics: improving decision support for humanitarian logistics operations," Annals of Operations Research, Springer, vol. 283(1), pages 247-265, December.
    13. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    14. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    15. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    16. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    17. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    18. R. K. Jana & Chandra Prakash Chandra & Aviral Kumar Tiwari, 2019. "Humanitarian aid delivery decisions during the early recovery phase of disaster using a discrete choice multi-attribute value method," Annals of Operations Research, Springer, vol. 283(1), pages 1211-1225, December.
    19. Lijo John & Anand Gurumurthy & Gunjan Soni & Vipul Jain, 2019. "Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: a case of Chennai flood relief," Annals of Operations Research, Springer, vol. 283(1), pages 1227-1258, December.
    20. Xihui Wang & Yunfei Wu & Liang Liang & Zhimin Huang, 2016. "Service outsourcing and disaster response methods in a relief supply chain," Annals of Operations Research, Springer, vol. 240(2), pages 471-487, May.
    21. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    22. Samuel Fosso Wamba & Angappa Gunasekaran & Rameshwar Dubey & Eric W. T. Ngai, 2018. "Big data analytics in operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 1-4, November.
    23. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    24. V. G. Venkatesh & Abraham Zhang & Eric Deakins & Sunil Luthra & S. Mangla, 2019. "A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains," Annals of Operations Research, Springer, vol. 283(1), pages 1517-1550, December.
    25. Deepa Mishra & Angappa Gunasekaran & Thanos Papadopoulos & Stephen J. Childe, 2018. "Big Data and supply chain management: a review and bibliometric analysis," Annals of Operations Research, Springer, vol. 270(1), pages 313-336, November.
    26. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    27. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yu & Wang, Weizhong & Qiao, Yin & Zheng, Qiaohong & Deveci, Muhammet & Varouchakis, Emmanouil A. & Al-Hinai, Amer, 2024. "Assessing adoption barriers to digital technology in the natural gas supply chain using an spherical fuzzy RAFSI model," Resources Policy, Elsevier, vol. 94(C).
    2. M. Ali Ülkü & James H. Bookbinder & Nam Yi Yun, 2024. "Leveraging Industry 4.0 Technologies for Sustainable Humanitarian Supply Chains: Evidence from the Extant Literature," Sustainability, MDPI, vol. 16(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo Fuli & Cyril Foropon & Ma Xin, 2022. "Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination," Annals of Operations Research, Springer, vol. 319(1), pages 355-377, December.
    2. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    3. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    4. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    5. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    6. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.
    7. Vicky Ching Gu & Bin Zhou & Qing Cao & Jeffery Adams, 2021. "Exploring the relationship between supplier development, big data analytics capability, and firm performance," Annals of Operations Research, Springer, vol. 302(1), pages 151-172, July.
    8. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    9. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    10. Sarah Schiffling & Claire Hannibal & Matthew Tickle & Yiyi Fan, 2022. "The implications of complexity for humanitarian logistics: a complex adaptive systems perspective," Annals of Operations Research, Springer, vol. 319(1), pages 1379-1410, December.
    11. Carlos Galera-Zarco & Goulielmos Floros, 2024. "A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making," Annals of Operations Research, Springer, vol. 339(1), pages 573-612, August.
    12. Abhishek Behl & Pankaj Dutta & Zongwei Luo & Pratima Sheorey, 2022. "Enabling artificial intelligence on a donation-based crowdfunding platform: a theoretical approach," Annals of Operations Research, Springer, vol. 319(1), pages 761-789, December.
    13. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    14. Rameshwar Dubey & Tripti Singh & Omprakash K. Gupta, 2015. "Impact of Agility, Adaptability and Alignment on Humanitarian Logistics Performance: Mediating Effect of Leadership," Global Business Review, International Management Institute, vol. 16(5), pages 812-831, October.
    15. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    16. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    17. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    18. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    19. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    20. Fan Chen & Sen Liu & Andrea Appolloni, 2020. "Horizontal Coordination of I-LNGOs in the Humanitarian Supply Chain: An Evolutionary Game Approach," Sustainability, MDPI, vol. 12(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:1:d:10.1007_s10479-020-03790-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.