The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jenvman.2021.113511
Note: View the original document on HAL open archive server: https://hal.science/hal-03797577
Download full text from publisher
References listed on IDEAS
- Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021.
"A note on investor happiness and the predictability of realized volatility of gold,"
Finance Research Letters, Elsevier, vol. 39(C).
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "A Note on Investor Happiness and the Predictability of Realized Volatility of Gold," Working Papers 202004, University of Pretoria, Department of Economics.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Zolfaghari, Mehdi & Ghoddusi, Hamed & Faghihian, Fatemeh, 2020. "Volatility spillovers for energy prices: A diagonal BEKK approach," Energy Economics, Elsevier, vol. 92(C).
- Bašta, Milan & Molnár, Peter, 2018. "Oil market volatility and stock market volatility," Finance Research Letters, Elsevier, vol. 26(C), pages 204-214.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghosh, Indranil & Jana, Rabin K., 2024. "Clean energy stock price forecasting and response to macroeconomic variables: A novel framework using Facebook's Prophet, NeuralProphet and explainable AI," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Li, Hailing & Li, Yuxin & Zhang, Hua, 2023. "The spillover effects among the traditional energy markets, metal markets and sub-sector clean energy markets," Energy, Elsevier, vol. 275(C).
- Anis Jarboui & Emna Mnif, 2024. "Can Clean Energy Stocks Predict Crude Oil Markets Using Hybrid and Advanced Machine Learning Models?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 821-844, December.
- Trotta, Annarita & Rania, Francesco & Strano, Eugenia, 2024. "Exploring the linkages between FinTech and ESG: A bibliometric perspective," Research in International Business and Finance, Elsevier, vol. 69(C).
- Xiang, Diling & Ghaemi Asl, Mahdi & Nasr Isfahani, Mohammad & Vasa, László, 2024. "Would really long-only climate-transition strategies in commodities bring lower market risk for sustainable markets in the long run? The Islamic sustainable market versus the global sustainability lea," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1271-1295.
- Wu, Xianguo & Wang, Jingyi & Feng, Zongbao & Chen, Hongyu & Li, Tiejun & Liu, Yang, 2024. "Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Hongqin Tang & Jianping Zhu & Nan Li & Weipeng Wu, 2024. "Impact of Enterprise Supply Chain Digitalization on Cost of Debt: A Four-Flows Perspective Analysis Using Explainable Machine Learning Methodology," Sustainability, MDPI, vol. 16(19), pages 1-27, October.
- Li, Dongxin & Zhang, Feipeng & Yuan, Di & Cai, Yuan, 2024. "Does COVID-19 impact the dependence between oil and stock markets? Evidence from RCEP countries," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 909-939.
- Kocaarslan, Baris & Mushtaq, Rizwan, 2024. "The impact of liquidity conditions on the time-varying link between U.S. municipal green bonds and major risky markets during the COVID-19 crisis: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
- Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
- Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
- Bhattacherjee, Purba & Mishra, Sibanjan & Bouri, Elie, 2024. "Does asset-based uncertainty drive asymmetric return connectedness across regional ESG markets?," Global Finance Journal, Elsevier, vol. 61(C).
- Yang, Cai & Zhang, Hongwei & Weng, Futian, 2024. "Effects of COVID-19 vaccination programs on EU carbon price forecasts: Evidence from explainable machine learning," International Review of Financial Analysis, Elsevier, vol. 91(C).
- de Boyrie, Maria E. & Pavlova, Ivelina, 2024. "Connectedness with commodities in emerging markets: ESG leaders vs. conventional indexes," Research in International Business and Finance, Elsevier, vol. 71(C).
- Kocaarslan, Baris, 2024. "US dollar and oil market uncertainty: New evidence from explainable machine learning," Finance Research Letters, Elsevier, vol. 64(C).
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
- Miriam Sosa & Edgar Ortiz & Alejandra Cabello, 2022. "ESG Green Equity Finance Risk and Links in Mexico: Conditional Volatility and Markov Switching Vector Analyses," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(4), pages 1-21, Octubre -.
- Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020.
"The predictive power of oil price shocks on realized volatility of oil: A note,"
Resources Policy, Elsevier, vol. 69(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note," Working Papers 202044, University of Pretoria, Department of Economics.
- Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment,"
Energies, MDPI, vol. 14(23), pages 1-18, December.
- Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
- Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
- Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
- Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023.
"The impacts of oil price volatility on financial stress: Is the COVID-19 period different?,"
International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
- Xin Sheng & Won Joong Kim & Rangan Gupta, 2021. "The Impacts of Oil Price Volatility on Financial Stress: Is the COVID-19 Period Different?," Working Papers 202184, University of Pretoria, Department of Economics.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Mohsin, Muhammad & Jamaani, Fouad, 2023. "A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing – A comparison of deep learning, machine learning, an," Resources Policy, Elsevier, vol. 86(PA).
- Bouri, Elie & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "Forecasting power of infectious diseases-related uncertainty for gold realized variance," Finance Research Letters, Elsevier, vol. 42(C).
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022.
"A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
- Gupta, Rangan & Pierdzioch, Christian, 2022.
"Climate risks and forecastability of the realized volatility of gold and other metal prices,"
Resources Policy, Elsevier, vol. 77(C).
- Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and Forecastability of the Realized Volatility of Gold and Other Metal Prices," Working Papers 202172, University of Pretoria, Department of Economics.
- Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
- Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022.
"Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?,"
Energy Economics, Elsevier, vol. 114(C).
- Oguzhan Cepni & Rangan Gupta & Daniel Pienaar & Christian Pierdzioch, 2022. "Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?," Working Papers 202205, University of Pretoria, Department of Economics.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
- Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024.
"Stock market bubbles and the realized volatility of oil price returns,"
Energy Economics, Elsevier, vol. 132(C).
- Rangan Gupta & Joshua Nielsen & Christian Pierdzioch, 2023. "Stock Market Bubbles and the Realized Volatility of Oil Price Returns," Working Papers 202325, University of Pretoria, Department of Economics.
- Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-10-09 (Big Data)
- NEP-CMP-2023-10-09 (Computational Economics)
- NEP-ENE-2023-10-09 (Energy Economics)
- NEP-ENV-2023-10-09 (Environmental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03797577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.