IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v124y2023ics0140988323003201.html
   My bibliography  Save this article

Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models

Author

Listed:
  • Stef, Nicolae
  • Başağaoğlu, Hakan
  • Chakraborty, Debaditya
  • Ben Jabeur, Sami

Abstract

Although the debate regarding the impact of high-quality institutional measures to address climate change associated with global carbon dioxide (CO2) emissions has gained increasing attention, there is insufficient quantitative evidence to support this debate. Using data from 136 countries between 1996 and 2016, we provide unique and compelling evidence that transcendent institutional measures and conscious government policies for environmentally sound and sustainable economic growth can effectively reduce CO2 emissions. Our research reveals that effective climate change policies must be associated with improvement in at least three main institutional dimensions: protection of property rights (the rule of law), citizens' participation in elections and freedom of expression (voice), and control of corruption. Climate-friendly economic policies must consider improving such institutional features while simultaneously advancing economic development, increasing the use of renewable energy by private and public entities, and significantly reducing the consumption of fossil fuels.

Suggested Citation

  • Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323003201
    DOI: 10.1016/j.eneco.2023.106822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323003201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    2. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    3. Fadly, Dalia, 2019. "Low-carbon transition: Private sector investment in renewable energy projects in developing countries," World Development, Elsevier, vol. 122(C), pages 552-569.
    4. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    5. Azmat Gani, 2012. "The Relationship Between Good Governance And Carbon Dioxide Emissions: Evidence From Developing Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 37(1), pages 77-93, March.
    6. Remmer Sassen & Anne-Kathrin Hinze & Inga Hardeck, 2016. "Impact of ESG factors on firm risk in Europe," Journal of Business Economics, Springer, vol. 86(8), pages 867-904, November.
    7. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    8. Ugur Korkut Pata, 2021. "Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(9), pages 1427-1439, December.
    9. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    10. Jiang, Sijian & Deng, Xiangzheng & Liu, Gang & Zhang, Fan, 2021. "Climate change-induced economic impact assessment by parameterizing spatially heterogeneous CO2 distribution," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    11. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    12. Jabeur, Sami Ben & Ballouk, Houssein & Mefteh-Wali, Salma & Omri, Anis, 2022. "Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    14. Gillan, Stuart L. & Koch, Andrew & Starks, Laura T., 2021. "Firms and social responsibility: A review of ESG and CSR research in corporate finance," Journal of Corporate Finance, Elsevier, vol. 66(C).
    15. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    16. Yung-Chia Chang & Kuei-Hu Chang & Heng-Hsuan Chu & Lee-Ing Tong, 2016. "Establishing decision tree-based short-term default credit risk assessment models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(23), pages 6803-6815, December.
    17. Ajmi, Ahdi Noomen & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sato, João Ricardo, 2015. "On the relationships between CO2 emissions, energy consumption and income: The importance of time variation," Energy Economics, Elsevier, vol. 49(C), pages 629-638.
    18. Venetsanos, Konstantinos & Angelopoulou, Penelope & Tsoutsos, Theocharis, 2002. "Renewable energy sources project appraisal under uncertainty: the case of wind energy exploitation within a changing energy market environment," Energy Policy, Elsevier, vol. 30(4), pages 293-307, March.
    19. Nicolae Stef & Sami Ben Jabeur, 2023. "Elections and Environmental Quality," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 593-625, February.
    20. Danish, & Baloch, Muhammad Awais & Wang, Bo, 2019. "Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 119-125.
    21. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    22. Belke, Ansgar & Dobnik, Frauke & Dreger, Christian, 2011. "Energy consumption and economic growth: New insights into the cointegration relationship," Energy Economics, Elsevier, vol. 33(5), pages 782-789, September.
    23. Naji Akbar & Ismaila Rimi Abubakar & Ayesha Agha Shah & Wafa Al-Madani, 2021. "Ecological Embeddedness in the Maya Built Environment: Inspiration for Contemporary Cities," Land, MDPI, vol. 10(12), pages 1-29, December.
    24. Bali Swain, Ranjula & Kambhampati, Uma S. & Karimu, Amin, 2020. "Regulation, governance and the role of the informal sector in influencing environmental quality?," Ecological Economics, Elsevier, vol. 173(C).
    25. Najm, Sarah & Matsumoto, Ken'ichi, 2020. "Does renewable energy substitute LNG international trade in the energy transition?," Energy Economics, Elsevier, vol. 92(C).
    26. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    27. Jeong Hwan Bae & Dmitriy D. Li & Meenakshi Rishi, 2017. "Determinants of CO emission for post-Soviet Union independent countries," Climate Policy, Taylor & Francis Journals, vol. 17(5), pages 591-615, July.
    28. Jeremy Galbreath, 2013. "ESG in Focus: The Australian Evidence," Journal of Business Ethics, Springer, vol. 118(3), pages 529-541, December.
    29. Jeremy Nguyen, Abbas Valadkhani, and Gholamreza Hajargasht, 2021. "The Choice between Renewables and Non-renewables: Evidence from Electricity Generation in 29 Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    30. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    31. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    32. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
    33. Kaufman, Andrew S. & Meier, Paul J. & Sinistore, Julie C. & Reinemann, Douglas J., 2010. "Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels," Energy Policy, Elsevier, vol. 38(9), pages 5229-5241, September.
    34. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    35. Mrabet, Zouhair & Alsamara, Mouyad & Mimouni, Karim & Mnasri, Ayman, 2021. "Can human development and political stability improve environmental quality? New evidence from the MENA region," Economic Modelling, Elsevier, vol. 94(C), pages 28-44.
    36. Lv, Zhike, 2017. "The effect of democracy on CO2 emissions in emerging countries: Does the level of income matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 900-906.
    37. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    38. Nicolae Stef & Sami Ben Jabeur, 2020. "Climate Change Legislations and Environmental Degradation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 839-868, December.
    39. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    40. Kais Saidi & Sami Hammami, 2015. "The Effect of Energy Consumption and Economic Growth on Co2 Emissions:Evidence from 58 Countries," Bulletin of Energy Economics (BEE), The Economics and Social Development Organization (TESDO), vol. 3(3), pages 91-104, September.
    41. Nicholas Charron & Lewis Dijkstra & Victor Lapuente, 2014. "Regional Governance Matters: Quality of Government within European Union Member States," Regional Studies, Taylor & Francis Journals, vol. 48(1), pages 68-90, January.
    42. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    2. Hyeon-Seok Kim & Hui-Sang Kim & Sun-Yong Choi, 2024. "Investigating the Impact of Agricultural, Financial, Economic, and Political Factors on Oil Forward Prices and Volatility: A SHAP Analysis," Energies, MDPI, vol. 17(5), pages 1-24, February.
    3. Chishti, Muhammad Zubair & Xia, Xiqiang & Dogan, Eyup, 2024. "Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement," Energy Economics, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    2. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    5. Daniel Armeanu & Georgeta Vintilă & Jean Vasile Andrei & Ştefan Cristian Gherghina & Mihaela Cristina Drăgoi & Cristian Teodor, 2018. "Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    6. Zaman, Khalid & Moemen, Mitwali Abd-el., 2017. "Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1119-1130.
    7. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    8. Karim, Sitara & Appiah, Michael & Naeem, Muhammad Abubakr & Lucey, Brian M. & Li, Mingxing, 2022. "Modelling the role of institutional quality on carbon emissions in Sub-Saharan African countries," Renewable Energy, Elsevier, vol. 198(C), pages 213-221.
    9. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    10. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    11. Mehmet Demiral & Emrah Eray Akça & Ipek Tekin, 2021. "Predictors of global carbon dioxide emissions: Do stringent environmental policies matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18337-18361, December.
    12. Shahbaz, Muhammad & Mahalik, Mantu Kumar & Shah, Syed Hasanat & Sato, João Ricardo, 2016. "Time-varying analysis of CO2 emissions, energy consumption, and economic growth nexus: Statistical experience in next 11 countries," Energy Policy, Elsevier, vol. 98(C), pages 33-48.
    13. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    14. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    15. Nicolae Stef & Sami Ben Jabeur, 2023. "Elections and Environmental Quality," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 593-625, February.
    16. Shahbaz, Muhammad & Balsalobre, Daniel & Shahzad, Syed Jawad Hussain, 2018. "The Influencing Factors of CO2 Emissions and the Role of Biomass Energy Consumption: Statistical Experience from G-7 Countries," MPRA Paper 87456, University Library of Munich, Germany, revised 14 Jun 2018.
    17. Adedoyin, Festus Fatai & Ozturk, Ilhan & Bekun, Festus Victor & Agboola, Phillips O. & Agboola, Mary Oluwatoyin, 2021. "Renewable and non-renewable energy policy simulations for abating emissions in a complex economy: Evidence from the novel dynamic ARDL," Renewable Energy, Elsevier, vol. 177(C), pages 1408-1420.
    18. Onater-Isberk, Esra, 2016. "Environmental Kuznets curve under noncarbohydrate energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 338-347.
    19. Sencer Atasoy, Burak, 2017. "Testing the environmental Kuznets curve hypothesis across the U.S.: Evidence from panel mean group estimators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 731-747.
    20. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.

    More about this item

    Keywords

    Explainable artificial intelligence; CO2 emissions; Institutional quality; Gross domestic product per capita; Renewable energy; Fossil fuel;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • P48 - Political Economy and Comparative Economic Systems - - Other Economic Systems - - - Legal Institutions; Property Rights; Natural Resources; Energy; Environment; Regional Studies
    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323003201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.