IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-023-05400-8.html
   My bibliography  Save this article

Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models

Author

Listed:
  • Haithem Awijen

    (Inseec Grande École, Omnes Education Group)

  • Hachmi Ben Ameur

    (Inseec Grande École, Omnes Education Group)

  • Zied Ftiti

    (OCRE Research Laboratory)

  • Waël Louhichi

    (ESSCA School of Management)

Abstract

This study investigates oil price forecasting during a time of crisis, from December 2007 to December 2021. As the oil market has experienced various shocks (exogenous versus endogenous), modelling and forecasting its prices dynamics become more complex based on conventional (econometric and structural) models. A new strand of literature has been attracting more attention during the last decades dealing with artificial intelligence methods. However, this literature is unanimous regarding the performance accuracy between machine learning and deep learning methods. We aim in this study to contribute to this literature by investigating the oil price forecasting based on these two approaches. Based on the stylized facts of oil prices dynamics, we select the support vector machine and long short-term memory approach, as two main models of Machine Learning and deep learning methods, respectively. Our findings support the superiority of the Deep Learning method compared to the Machine Learning approach. Interestingly, our results show that the Deep LSTM-prediction has a close pattern to the observed oil prices, demonstrating robust fitting accuracy at mid-to-long forecast horizons during crisis events. However, our results show that SVM machine learning has poor memory ability to establish a clearer understanding of time-dependent volatility and the dynamic co-movements between actual and predicted data. Moreover, our results show that the power of SVM to learn for long-term predictions is reduced, which potentially lead to distortions of forecasting performance.

Suggested Citation

  • Haithem Awijen & Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2025. "Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models," Annals of Operations Research, Springer, vol. 345(2), pages 979-1002, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-023-05400-8
    DOI: 10.1007/s10479-023-05400-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05400-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05400-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-023-05400-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.