IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00397324.html
   My bibliography  Save this paper

Perturbations extrêmes sur la dérive de mortalité anticipée

Author

Listed:
  • Frédéric Planchet

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Marc Juillard

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Pierre-Emmanuel Thérond

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

L'objectif de ce travail est de proposer un modèle réaliste et opérationnel pour mesurer le risque systématique associé à la construction de tables de mortalité prospectives. Une application du modèle à l'évaluation de l'engagement d'un engagement de retraite est proposée. Le modèle présenté est construit sur la base d'un modèle de Lee-Carter. Les tables prospectives stochastiques sont obtenues en modélisant l'incertitude attachée au paramètre de tendance du modèle.

Suggested Citation

  • Frédéric Planchet & Marc Juillard & Pierre-Emmanuel Thérond, 2008. "Perturbations extrêmes sur la dérive de mortalité anticipée," Post-Print hal-00397324, HAL.
  • Handle: RePEc:hal:journl:hal-00397324
    Note: View the original document on HAL open archive server: https://hal.science/hal-00397324
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00397324/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    2. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    2. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    3. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    4. Jackie Li, 2014. "An application of MCMC simulation in mortality projection for populations with limited data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(1), pages 1-48.
    5. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    6. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    7. Chu-Chang Ku & Peter J Dodd, 2019. "Forecasting the impact of population ageing on tuberculosis incidence," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    8. Olivieri, Annamaria & Pitacco, Ermanno, 2008. "Assessing the cost of capital for longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1013-1021, June.
    9. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    10. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    11. Post Thomas, 2012. "Individual Welfare Gains from Deferred Life-Annuities under Stochastic Mortality," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 6(2), pages 1-26, June.
    12. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    13. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    14. Debon, A. & Montes, F. & Mateu, J. & Porcu, E. & Bevilacqua, M., 2008. "Modelling residuals dependence in dynamic life tables: A geostatistical approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3128-3147, February.
    15. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    16. Lydia Dutton & Athanasios A. Pantelous & Malgorzata Seklecka, 2020. "The impact of economic growth in mortality modelling for selected OECD countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 533-550, April.
    17. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    18. Jorge Bravo, 2011. "Pricing Longevity Bonds Using Affine-Jump Diffusion Models," CEFAGE-UE Working Papers 2011_29, University of Evora, CEFAGE-UE (Portugal).
    19. Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    21. Gourieroux, C. & Monfort, A., 2008. "Quadratic stochastic intensity and prospective mortality tables," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 174-184, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00397324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.