IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-02367200.html
   My bibliography  Save this paper

The Laplace transform of the integrated Volterra Wishart process

Author

Listed:
  • Eduardo Abi Jaber

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 UFR27 - Université Paris 1 Panthéon-Sorbonne - UFR Mathématiques & Informatique - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

We establish an explicit expression for the conditional Laplace transform of the integrated Volterra Wishart process in terms of a certain resolvent of the covariance function. The core ingredient is the derivation of the conditional Laplace transform of general Gaussian processes in terms of Fredholm's determinant and resolvent. Furthermore , we link the characteristic exponents to a system of non-standard infinite dimensional matrix Riccati equations. This leads to a second representation of the Laplace transform for a special case of convolution kernel. In practice, we show that both representations can be approximated by either closed form solutions of conventional Wishart distributions or finite dimensional matrix Riccati equations stemming from conventional linear-quadratic models. This allows fast pricing in a variety of highly flexible models, ranging from bond pricing in quadratic short rate models with rich autocorrelation structures, long range dependence and possible default risk, to pricing basket options with covariance risk in multivariate rough volatility models.

Suggested Citation

  • Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
  • Handle: RePEc:hal:cesptp:hal-02367200
    DOI: 10.1111/mafi.12334
    Note: View the original document on HAL open archive server: https://hal.science/hal-02367200v4
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02367200v4/document
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. L. Kleptsyna & A. Le Breton & M. Viot, 2002. "New formulas concerning Laplace transforms of quadratic forms for general Gaussian sequences," International Journal of Stochastic Analysis, Hindawi, vol. 15, pages 1-17, January.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    4. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    5. Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
    6. Christian Gourieroux & Razvan Sufana, 2003. "Whishart Quadratic Term Structure Models," Working Papers 2003-50, Center for Research in Economics and Statistics.
    7. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra type processes," Papers 1907.01917, arXiv.org, revised Sep 2019.
    8. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    9. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    10. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2019. "Extreme-strike asymptotics for general Gaussian stochastic volatility models," Annals of Finance, Springer, vol. 15(1), pages 59-101, March.
    11. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    12. Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
    13. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 1995-2013, December.
    14. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    15. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    16. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    17. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    18. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    19. Peng Cheng & Olivier Scaillet, 2007. "Linear‐Quadratic Jump‐Diffusion Modeling," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 575-598, October.
    20. Aur'elien Alfonsi & Alexander Schied, 2012. "Capacitary measures for completely monotone kernels via singular control," Papers 1201.2756, arXiv.org, revised Feb 2013.
    21. Li Chen & H. Vincent Poor, 2003. "Markovian Quadratic Term Structure Models For Risk-free And Defaultable Rates," Finance 0303008, University Library of Munich, Germany.
    22. Aurélien Alfonsi & Alexander Schied, 2013. "Capacitary measures for completely monotone kernels via singular control," Post-Print hal-00659421, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    3. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
    2. Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jul 2024.
    3. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Post-Print hal-02367200, HAL.
    4. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    6. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    9. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    10. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    11. repec:uts:finphd:41 is not listed on IDEAS
    12. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Working Papers hal-02877569, HAL.
    13. Christa Cuchiero & Tonio Mollmann & Josef Teichmann, 2023. "Ramifications of generalized Feller theory," Papers 2308.03858, arXiv.org.
    14. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    15. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    16. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    17. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Post-Print hal-02877569, HAL.
    18. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    19. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02877569, HAL.
    20. Eduardo Abi Jaber & Enzo Miller & Huy^en Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Papers 2006.13539, arXiv.org, revised Jan 2021.
    21. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.

    More about this item

    Keywords

    Wishart processes; Gaussian processes; Fredholm's determinant; quadratic short rate models; rough volatility models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-02367200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.