IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i4p515-536.html
   My bibliography  Save this article

Quadratic Term Structure Models For Risk‐Free And Defaultable Rates

Author

Listed:
  • Li Chen
  • Damir Filipović
  • H. Vincent Poor

Abstract

In this paper, quadratic term structure models (QTSMs) are analyzed and characterized in a general Markovian setting. The primary motivation for this work is to find a useful extension of the traditional QTSM, which is based on an Ornstein–Uhlenbeck (OU) state process, while maintaining the analytical tractability of the model. To accomplish this, the class of quadratic processes, consisting of those Markov state processes that yield QTSM, is introduced. The main result states that OU processes are the only conservative quadratic processes. In general, however, a quadratic potential can be added to allow QTSMs to model default risk. It is further shown that the exponent functions that are inherent in the definition of the quadratic property can be determined by a system of Riccati equations with a unique admissible parameter set. The implications of these results for modeling the term structure of risk‐free and defaultable rates are discussed.

Suggested Citation

  • Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:4:p:515-536
    DOI: 10.1111/j.0960-1627.2004.00203.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00203.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00203.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Boyarchenko & Sergei Levendorskiǐ, 2007. "On Errors And Bias Of Fourier Transform Methods In Quadratic Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 273-306.
    2. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    3. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    4. Antonio Diez De Los Rios, 2009. "Can Affine Term Structure Models Help Us Predict Exchange Rates?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(4), pages 755-766, June.
    5. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    6. Niels Rom-Poulsen, 2007. "Semi-analytical MBS Pricing," The Journal of Real Estate Finance and Economics, Springer, vol. 34(4), pages 463-498, May.
    7. Sergei Levendorskiǐ, 2005. "Pseudodiffusions And Quadratic Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 393-424, July.
    8. Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.
    9. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
    10. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    11. Nawalkha, Sanjay K & Zhuo, Xiaoyang, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," OSF Preprints hsxtu, Center for Open Science.
    12. Peng Cheng & Olivier Scaillet, 2007. "Linear‐Quadratic Jump‐Diffusion Modeling," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 575-598, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:4:p:515-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.