IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.01917.html
   My bibliography  Save this paper

Markovian lifts of positive semidefinite affine Volterra type processes

Author

Listed:
  • Christa Cuchiero
  • Josef Teichmann

Abstract

We consider stochastic partial differential equations appearing as Markovian lifts of matrix valued (affine) Volterra type processes from the point of view of the generalized Feller property (see e.g., \cite{doetei:10}). We introduce in particular Volterra Wishart processes with fractional kernels and values in the cone of positive semidefinite matrices. They are constructed from matrix products of infinite dimensional Ornstein Uhlenbeck processes whose state space are matrix valued measures. Parallel to that we also consider positive definite Volterra pure jump processes, giving rise to multivariate Hawkes type processes. We apply these affine covariance processes for multivariate (rough) volatility modeling and introduce a (rough) multivariate Volterra Heston type model.

Suggested Citation

  • Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra type processes," Papers 1907.01917, arXiv.org, revised Sep 2019.
  • Handle: RePEc:arx:papers:1907.01917
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.01917
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Abi Jaber & Omar El Euch, 2018. "Markovian structure of the Volterra Heston model," Working Papers hal-01716696, HAL.
    2. Mayerhofer, Eberhard, 2012. "Affine processes on positive semidefinite d×d matrices have jumps of finite variation in dimension d>1," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3445-3459.
    3. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    4. Philipp Doersek & Josef Teichmann, 2010. "A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations," Papers 1011.2651, arXiv.org.
    5. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    6. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    7. Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    2. Bondi, Alessandro & Livieri, Giulia & Pulido, Sergio, 2024. "Affine Volterra processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    3. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    4. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    5. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    6. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    9. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    10. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    11. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    12. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
    13. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    14. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    15. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    16. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    17. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    18. Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
    19. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    20. Eduardo Abi Jaber, 2020. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Working Papers hal-02412741, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.01917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.