Extreme-strike asymptotics for general Gaussian stochastic volatility models
Author
Abstract
Suggested Citation
DOI: 10.1007/s10436-018-0338-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rosenbaum, Mathieu, 2008. "Estimation of the volatility persistence in a discretely observed diffusion model," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1434-1462, August.
- Fabienne Comte & Eric Renault, 1998.
"Long memory in continuous‐time stochastic volatility models,"
Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
- Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
- Alexandra Chronopoulou & Frederi G. Viens, 2012. "Stochastic volatility and option pricing with long-memory in discrete and continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 635-649, December.
- Jim Gatheral & Antoine Jacquier, 2014.
"Arbitrage-free SVI volatility surfaces,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
- Jim Gatheral & Antoine Jacquier, 2012. "Arbitrage-free SVI volatility surfaces," Papers 1204.0646, arXiv.org, revised Mar 2013.
- Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
- S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
- Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Archil Gulisashvili, 2020. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Papers 2002.05143, arXiv.org, revised Dec 2020.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
- Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.
- Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jul 2024.
- Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
- Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
- Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Post-Print hal-02367200, HAL.
- Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
- Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
- Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
- Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Extreme-Strike Asymptotics for General Gaussian Stochastic Volatility Models," Papers 1502.05442, arXiv.org, revised Feb 2017.
- Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
- Jacquier, Antoine & Roome, Patrick, 2016.
"Large-maturity regimes of the Heston forward smile,"
Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
- Antoine Jacquier & Patrick Roome, 2014. "Large-Maturity Regimes of the Heston Forward Smile," Papers 1410.7206, arXiv.org, revised Aug 2015.
- Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
- A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
- Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
- J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.
- Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- Gaoyue Guo & Antoine Jacquier & Claude Martini & Leo Neufcourt, 2012. "Generalised arbitrage-free SVI volatility surfaces," Papers 1210.7111, arXiv.org, revised May 2016.
- Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
- Vimal Raval & Antoine Jacquier, 2023. "The log‐moment formula for implied volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1146-1165, October.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
- Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
- Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
- J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2013. "Marginal density expansions for diffusions and stochastic volatility, part II: Applications [to the Stein--Stein model]," Papers 1305.6765, arXiv.org.
- Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
- Sergey Badikov & Mark H.A. Davis & Antoine Jacquier, 2021. "Perturbation analysis of sub/super hedging problems," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1240-1274, October.
- Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
- Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
More about this item
Keywords
Stochastic volatility; Implied volatility; Large strike; Karhunen–Loève expansion; Chi-squared variates;All these keywords.
JEL classification:
- C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:15:y:2019:i:1:d:10.1007_s10436-018-0338-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.