IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v178y2024ics0304414924001881.html
   My bibliography  Save this article

Markovian lifting and asymptotic log-Harnack inequality for stochastic Volterra integral equations

Author

Listed:
  • Hamaguchi, Yushi

Abstract

We introduce a new framework of Markovian lifts of stochastic Volterra integral equations (SVIEs for short) with completely monotone kernels. We define the state space of the Markovian lift as a separable Hilbert space which incorporates the singularity or regularity of the kernel into the definition. We show that the solution of an SVIE is represented by the solution of a lifted stochastic evolution equation (SEE for short) defined on the Hilbert space and prove the existence, uniqueness and Markov property of the solution of the lifted SEE. Furthermore, we establish an asymptotic log-Harnack inequality and some consequent properties for the Markov semigroup associated with the Markovian lift via the asymptotic coupling method.

Suggested Citation

  • Hamaguchi, Yushi, 2024. "Markovian lifting and asymptotic log-Harnack inequality for stochastic Volterra integral equations," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001881
    DOI: 10.1016/j.spa.2024.104482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924001881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.