IDEAS home Printed from https://ideas.repec.org/p/gwc/wpaper/2016-006.html
   My bibliography  Save this paper

Predicting U.S. Business Cycle Turning Points Using Real-Time Diffusion Indexes Based on a Large Data Set

Author

Listed:
  • Herman O. Stekler

    (The George Washington University)

  • Yongchen Zhao

    (Towson University)

Abstract

This paper considers the issue of predicting cyclical turning points using real-time diffusion indexes constructed using a large data set from March 2005 to September 2014. We construct diffusion indexes at the monthly frequency, compare several smoothing and signal extraction methods, and evaluate predictions based on the indexes. Our finding suggest that diffusion indexes are still effective tools in predicting turning points. Using diffusion indexes, along with good judgement, one would have successfully predicted or at least identified the 2008 recession in real time.

Suggested Citation

  • Herman O. Stekler & Yongchen Zhao, 2016. "Predicting U.S. Business Cycle Turning Points Using Real-Time Diffusion Indexes Based on a Large Data Set," Working Papers 2016-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  • Handle: RePEc:gwc:wpaper:2016-006
    as

    Download full text from publisher

    File URL: https://www2.gwu.edu/~forcpgm/2016-006.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    3. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    4. Herman O Stekler & Raj M Talwar, 2013. "Forecasting the Downturn of the Great Recession," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 48(2), pages 113-120, April.
    5. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    6. Monokroussos, George & Zhao, Yongchen, 2020. "Nowcasting in real time using popularity priors," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
    7. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    8. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    9. Gerhard Rünstler, 2016. "On the Design of Data Sets for Forecasting with Dynamic Factor Models," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 629-662, Emerald Group Publishing Limited.
    10. Theodore Alexandrov & Silvia Bianconcini & Estela Bee Dagum & Peter Maass & Tucker S. McElroy, 2012. "A Review of Some Modern Approaches to the Problem of Trend Extraction," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 593-624, November.
    11. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    12. Fossati Sebastian, 2016. "Dating US business cycles with macro factors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(5), pages 529-547, December.
    13. Kathryn Lundquist & Herman O Stekler, 2012. "Interpreting the Performance of Business Economists During the Great Recession," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 47(2), pages 148-154, April.
    14. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    15. Geoffrey H. Moore, 1950. "Statistical Indicators of Cyclical Revivals and Recessions," NBER Books, National Bureau of Economic Research, Inc, number moor50-1.
    16. S. S. Alexander & H. O. Stekler, 1959. "Forecasting Industrial Production--Leading Series versus Autoregression," Journal of Political Economy, University of Chicago Press, vol. 67(4), pages 402-402.
    17. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    18. Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
    19. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    20. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    21. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Mathy & Yongchen Zhao, 2023. "Could Diffusion Indexes Have Forecasted the Great Depression?," Working Papers 2023-05, Towson University, Department of Economics, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    2. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    3. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    4. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    5. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    6. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    7. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    8. Klaus Abberger & Michael Graff & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "The KOF Economic Barometer, Version 2014," KOF Working papers 14-353, KOF Swiss Economic Institute, ETH Zurich.
    9. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    10. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    11. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    12. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
    13. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    14. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    15. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    16. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    17. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    18. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    19. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    20. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gwc:wpaper:2016-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: GW Economics Department (email available below). General contact details of provider: https://edirc.repec.org/data/pfgwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.