IDEAS home Printed from https://ideas.repec.org/p/gro/rugsom/99a50.html
   My bibliography  Save this paper

Solving large instances of the quadratic cost of partition problem on dense graphs by data correcting algorithms

Author

Listed:
  • Goldengorin, Boris
  • Vink, Marius de

    (Groningen University)

Abstract

The Data-Correcting Algorithm (DCA) corrects the data of a hard problem instance in such a way that we obtain an instance of a well solvable special case. For a given prescribed accuracy of the solution, the DCA uses a branch and bound scheme to make sure that the solution of the corrected instance satisfies this given prescribed accuracy. We describe the "hardness" of randomly generated instances of the Quadratic Cost Partition Problem (QCP) by the density of the corresponding graphs as well as by the cardinality of an optimal solution of the QCP. We study the behaviour of the DCAs through the number of search levels of the so called Preliminary Preservation Al-gorithm and average computational times. We report average computational times of the DCA for instances of dense graphs with the number of vertices up to 500 which can be solved on a standard PC within 10 minutes.

Suggested Citation

  • Goldengorin, Boris & Vink, Marius de, 1999. "Solving large instances of the quadratic cost of partition problem on dense graphs by data correcting algorithms," Research Report 99A50, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  • Handle: RePEc:gro:rugsom:99a50
    as

    Download full text from publisher

    File URL: http://irs.ub.rug.nl/ppn/188210458
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Endre Boros & Peter L. Hammer, 1993. "Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 245-253, February.
    3. Boris Goldengorin & Gerard Sierksma & Gert A. Tijssen & Michael Tso, 1999. "The Data-Correcting Algorithm for the Minimization of Supermodular Functions," Management Science, INFORMS, vol. 45(11), pages 1539-1551, November.
    4. Fred Glover & Gary A. Kochenberger & Bahram Alidaee, 1998. "Adaptive Memory Tabu Search for Binary Quadratic Programs," Management Science, INFORMS, vol. 44(3), pages 336-345, March.
    5. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Pierre Chardaire & Alain Sutter, 1995. "A Decomposition Method for Quadratic Zero-One Programming," Management Science, INFORMS, vol. 41(4), pages 704-712, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dgr:rugsom:99a50 is not listed on IDEAS
    2. repec:dgr:rugsom:99a17 is not listed on IDEAS
    3. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    4. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    5. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    7. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    8. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    9. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    10. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    11. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    12. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    13. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    14. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    15. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    16. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    17. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    18. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    19. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    20. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    21. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    22. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gro:rugsom:99a50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hanneke Tamling (email available below). General contact details of provider: https://edirc.repec.org/data/ferugnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.