IDEAS home Printed from https://ideas.repec.org/p/gro/rugsom/04a20.html
   My bibliography  Save this paper

A Multilevel Search Algorithm for the Maximization of Submodular Functions

Author

Listed:
  • Goldengorin, Boris
  • Ghosh, Diptesh

    (Groningen University)

Abstract

We consider the objective function of a simple recourse problem with fixed technology matrix and integer second-stage variables. Separability due to the simple recourse structure allows to study a one-dimensional version instead. Based on an explicit formula for the objective function, we derive a complete description of the class of probability density functions such that the objective function is convex. This result is also stated in terms of random variables. Next, we present a class of convex approximations of the objective function, which are obtained by perturbing the distributions of the right-hand side parameters. We derive a uniform bound on the absolute error of the approximation. Finally, we give a representation of convex simple integer recourse problems as continuous simple recourse problems, so that they can be solved by existing special purpose algorithms

Suggested Citation

  • Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  • Handle: RePEc:gro:rugsom:04a20
    as

    Download full text from publisher

    File URL: http://irs.ub.rug.nl/ppn/288251229
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boris Goldengorin & Gerard Sierksma & Gert A. Tijssen & Michael Tso, 1999. "The Data-Correcting Algorithm for the Minimization of Supermodular Functions," Management Science, INFORMS, vol. 45(11), pages 1539-1551, November.
    2. Fred Glover & Gary A. Kochenberger & Bahram Alidaee, 1998. "Adaptive Memory Tabu Search for Binary Quadratic Programs," Management Science, INFORMS, vol. 44(3), pages 336-345, March.
    3. Stefano Benati, 2003. "An Improved Branch & Bound Method for the Uncapacitated Competitive Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 43-58, September.
    4. Goldengorin, Boris & Ghosh, Diptesh & Sierksma Gerard, 2004. "Data Correcting Algorithms in Combinatorial Optimization," IIMA Working Papers WP2004-04-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    6. Beasley, J. E., 1993. "Lagrangean heuristics for location problems," European Journal of Operational Research, Elsevier, vol. 65(3), pages 383-399, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijing Wang & Dachuan Xu & Yishui Wang & Dongmei Zhang, 2020. "Non-submodular maximization on massive data streams," Journal of Global Optimization, Springer, vol. 76(4), pages 729-743, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dgr:rugsom:04a20 is not listed on IDEAS
    2. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    3. repec:dgr:rugsom:99a17 is not listed on IDEAS
    4. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    6. repec:dgr:rugsom:01a53 is not listed on IDEAS
    7. repec:dgr:rugsom:01a14 is not listed on IDEAS
    8. Goldengorin, Boris & Vink, Marius de, 1999. "Solving large instances of the quadratic cost of partition problem on dense graphs by data correcting algorithms," Research Report 99A50, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    9. repec:dgr:rugsom:98a08 is not listed on IDEAS
    10. Goldengorin, Boris, 2001. "Solving the simple plant location problem using a data correcting approach," Research Report 01A53, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    11. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    12. Goldengorin, Boris & Sierksma, Gerard & Tijssen, Gert A., 1998. "The data-correcting algorithm for supermodular functions, with applications to quadratic cost partition and simple plant location problems," Research Report 98A08, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    13. Boris Goldengorin & Gerard Sierksma & Gert A. Tijssen & Michael Tso, 1999. "The Data-Correcting Algorithm for the Minimization of Supermodular Functions," Management Science, INFORMS, vol. 45(11), pages 1539-1551, November.
    14. repec:dgr:rugsom:99a50 is not listed on IDEAS
    15. Goldengorin, Boris & Ghosh, Diptesh & Sierksma, Gerard, 2001. "Branch and peg algorithms for the simple plant location problem," Research Report 01A14, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    17. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    18. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    19. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    20. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    21. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    22. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    23. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    24. Monabbati, Ehsan & Kakhki, Hossein Taghizadeh, 2015. "On a class of subadditive duals for the uncapacitated facility location problem," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 118-131.
    25. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    26. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gro:rugsom:04a20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hanneke Tamling (email available below). General contact details of provider: https://edirc.repec.org/data/ferugnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.