IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i2d10.1007_s10898-020-00909-9.html
   My bibliography  Save this article

A model of anytime algorithm performance for bi-objective optimization

Author

Listed:
  • Alexandre D. Jesus

    (University of Coimbra, CISUC, DEI
    Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL)

  • Luís Paquete

    (University of Coimbra, CISUC, DEI)

  • Arnaud Liefooghe

    (University of Tokyo)

Abstract

Anytime algorithms allow a practitioner to trade-off runtime for solution quality. This is of particular interest in multi-objective combinatorial optimization since it can be infeasible to identify all efficient solutions in a reasonable amount of time. We present a theoretical model that, under some mild assumptions, characterizes the “optimal” trade-off between runtime and solution quality, measured in terms of relative hypervolume, of anytime algorithms for bi-objective optimization. In particular, we assume that efficient solutions are collected sequentially such that the collected solution at each iteration maximizes the hypervolume indicator, and that the non-dominated set can be well approximated by a quadrant of a superellipse. We validate our model against an “optimal” model that has complete knowledge of the non-dominated set. The empirical results suggest that our theoretical model approximates the behavior of this optimal model quite well. We also analyze the anytime behavior of an $$\varepsilon $$ ε -constraint algorithm, and show that our model can be used to guide the algorithm and improve its anytime behavior.

Suggested Citation

  • Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:2:d:10.1007_s10898-020-00909-9
    DOI: 10.1007/s10898-020-00909-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00909-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00909-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    2. Loudni, Samir & Boizumault, Patrice, 2008. "Combining VNS with constraint programming for solving anytime optimization problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 705-735, December.
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    6. G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    3. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    4. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    5. repec:dgr:rugsom:99a17 is not listed on IDEAS
    6. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    7. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    8. Zhenning Zhang & Bin Liu & Yishui Wang & Dachuan Xu & Dongmei Zhang, 2022. "Maximizing a monotone non-submodular function under a knapsack constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1125-1148, July.
    9. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    10. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    11. Yingfei Wang & Inbal Yahav & Balaji Padmanabhan, 2024. "Smart Testing with Vaccination: A Bandit Algorithm for Active Sampling for Managing COVID-19," Information Systems Research, INFORMS, vol. 35(1), pages 120-144, March.
    12. Chenggang Wang & Zengfu Wang & Xiong Xu & Yuhang Hao, 2021. "A balanced sensor scheduling for multitarget localization in a distributed multiple-input multiple-output radar network," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    13. Yanzhi Li & Zhicheng Liu & Chuchu Xu & Ping Li & Xiaoyan Zhang & Hong Chang, 2023. "Two-stage submodular maximization under curvature," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-16, March.
    14. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    15. Xiaojuan Zhang & Qian Liu & Min Li & Yang Zhou, 2022. "Fast algorithms for supermodular and non-supermodular minimization via bi-criteria strategy," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3549-3574, December.
    16. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    17. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    18. Shaojie Tang & Jing Yuan, 2023. "Beyond submodularity: a unified framework of randomized set selection with group fairness constraints," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-22, May.
    19. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 2018. "A local search approximation algorithm for the uniform capacitated k-facility location problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 409-423, February.
    20. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    21. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:2:d:10.1007_s10898-020-00909-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.