IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.20860.html
   My bibliography  Save this paper

Robust Network Targeting with Multiple Nash Equilibria

Author

Listed:
  • Guanyi Wang

Abstract

Many policy problems involve designing individualized treatment allocation rules to maximize the equilibrium social welfare of interacting agents. Focusing on large-scale simultaneous decision games with strategic complementarities, we develop a method to estimate an optimal treatment allocation rule that is robust to the presence of multiple equilibria. Our approach remains agnostic about changes in the equilibrium selection mechanism under counterfactual policies, and we provide a closed-form expression for the boundary of the set-identified equilibrium outcomes. To address the incompleteness that arises when an equilibrium selection mechanism is not specified, we use the maximin welfare criterion to select a policy, and implement this policy using a greedy algorithm. We establish a performance guarantee for our method by deriving a welfare regret bound, which accounts for sampling uncertainty and the use of the greedy algorithm. We demonstrate our method with an application to the microfinance dataset of Banerjee et al. (2013).

Suggested Citation

  • Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2410.20860
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.20860
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyang Sheng, 2020. "A Structural Econometric Analysis of Network Formation Games Through Subnetworks," Econometrica, Econometric Society, vol. 88(5), pages 1829-1858, September.
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Angelo Mele, 2017. "A Structural Model of Dense Network Formation," Econometrica, Econometric Society, vol. 85, pages 825-850, May.
    4. Benjamin Brooks & Songzi Du, 2024. "On the Structure of Informationally Robust Optimal Mechanisms," Econometrica, Econometric Society, vol. 92(5), pages 1391-1438, September.
    5. Yan Chen & Robert Gazzale, 2004. "When Does Learning in Games Generate Convergence to Nash Equilibria? The Role of Supermodularity in an Experimental Setting," American Economic Review, American Economic Association, vol. 94(5), pages 1505-1535, December.
    6. Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
    7. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521741231, January.
    8. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    9. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    11. Natalia Lazzati, 2015. "Treatment response with social interactions: Partial identification via monotone comparative statics," Quantitative Economics, Econometric Society, vol. 6(1), pages 49-83, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toru Kitagawa & Guanyi Wang, 2023. "Individualized Treatment Allocation in Sequential Network Games," Papers 2302.05747, arXiv.org, revised Jul 2024.
    2. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    3. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    4. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    5. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    8. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    9. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    10. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    11. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    12. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    13. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    14. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    15. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    16. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    17. repec:dgr:rugsom:99a17 is not listed on IDEAS
    18. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    19. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    20. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    21. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.20860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.