IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i6p1362-1381.html
   My bibliography  Save this article

The Impact of Passive Social Media Viewers in Influence Maximization

Author

Listed:
  • Michael Kahr

    (Institute of Production and Logistics Management, Johannes Kepler University, 4040 Linz, Austria)

  • Markus Leitner

    (Department of Operations Analytics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands)

  • Ivana Ljubić

    (Department of Information Systems, Decision Sciences and Statistics, ESSEC Business School, 95021 Cergy Pontoise, France)

Abstract

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers to trigger an information propagation cascade (in terms of active message forwarders) of expected maximum impact. Previously studied problems typically neglect that the probability that individuals passively view content without forwarding it is much higher than the probability that they forward content. Considering passive viewing enables us to maximize more natural (social media) marketing metrics, including (a) the expected organic reach, (b) the expected number of total impressions, or (c) the expected patronage, all of which are investigated in this paper for the first time in the context of influence maximization. We propose mathematical models to maximize these objectives, whereby the model for variant (c) includes individual’s resistances and uses a multinomial logit model to model customer behavior. We also show that these models can be easily adapted to a competitive setting in which the seed set of a competitor is known. In a computational study based on network graphs from Twitter (now X) and from the literature, we show that one can increase the expected patronage, organic reach, and number of total impressions by 36% on average (and up to 13 times in particular cases) compared with seed sets obtained from the classical maximization of message-forwarding users.

Suggested Citation

  • Michael Kahr & Markus Leitner & Ivana Ljubić, 2024. "The Impact of Passive Social Media Viewers in Influence Maximization," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1362-1381, December.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1362-1381
    DOI: 10.1287/ijoc.2023.0047
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.0047
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.0047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Sharad Goel & Ashton Anderson & Jake Hofman & Duncan J. Watts, 2016. "The Structural Virality of Online Diffusion," Management Science, INFORMS, vol. 62(1), pages 180-196, January.
    3. Kahr, Michael & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Benders decomposition for competitive influence maximization in (social) networks," Omega, Elsevier, vol. 100(C).
    4. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    5. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    6. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    2. Kahr, Michael & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Benders decomposition for competitive influence maximization in (social) networks," Omega, Elsevier, vol. 100(C).
    3. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    4. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    5. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    8. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    9. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    10. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    11. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    12. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    13. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    14. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    15. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    16. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    17. repec:dgr:rugsom:99a17 is not listed on IDEAS
    18. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    19. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    20. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    21. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1362-1381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.