IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i6p1362-1381.html
   My bibliography  Save this article

The Impact of Passive Social Media Viewers in Influence Maximization

Author

Listed:
  • Michael Kahr

    (Institute of Production and Logistics Management, Johannes Kepler University, 4040 Linz, Austria)

  • Markus Leitner

    (Department of Operations Analytics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands)

  • Ivana Ljubić

    (Department of Information Systems, Decision Sciences and Statistics, ESSEC Business School, 95021 Cergy Pontoise, France)

Abstract

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers to trigger an information propagation cascade (in terms of active message forwarders) of expected maximum impact. Previously studied problems typically neglect that the probability that individuals passively view content without forwarding it is much higher than the probability that they forward content. Considering passive viewing enables us to maximize more natural (social media) marketing metrics, including (a) the expected organic reach, (b) the expected number of total impressions, or (c) the expected patronage, all of which are investigated in this paper for the first time in the context of influence maximization. We propose mathematical models to maximize these objectives, whereby the model for variant (c) includes individual’s resistances and uses a multinomial logit model to model customer behavior. We also show that these models can be easily adapted to a competitive setting in which the seed set of a competitor is known. In a computational study based on network graphs from Twitter (now X) and from the literature, we show that one can increase the expected patronage, organic reach, and number of total impressions by 36% on average (and up to 13 times in particular cases) compared with seed sets obtained from the classical maximization of message-forwarding users.

Suggested Citation

  • Michael Kahr & Markus Leitner & Ivana Ljubić, 2024. "The Impact of Passive Social Media Viewers in Influence Maximization," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1362-1381, December.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1362-1381
    DOI: 10.1287/ijoc.2023.0047
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.0047
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.0047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1362-1381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.