IDEAS home Printed from https://ideas.repec.org/p/gla/glaewp/2022_17.html
   My bibliography  Save this paper

Modelling Low-Frequency Covariability of Paleoclimatic Data

Author

Listed:
  • Vasco J.Gabriel
  • Luis F. Martins
  • Anthoulla Phella

Abstract

This paper explores formal statistical procedures that allow us to quantify low-frequency comovement amongst a range of paleoclimate times series. Our first contribution is methodological: we extend the long-run covariability approach of Muller and Watson (2018) to higher dimensional settings by means of a first-pass partialling out of exogenous sources of variation. Our second contribution is empirical: we provide new estimates for the long-run relationship between temperatures and CO2, concluding that in the long-run a 100ppm increase in CO2 levels would raise temperatures around 1◦C. Finally, we illustrate how joint modelling of this set of paleoclimate time series can be carried out by factor analysis and how long-term projections about temperature increases and ice-sheet retreat can be constructed.

Suggested Citation

  • Vasco J.Gabriel & Luis F. Martins & Anthoulla Phella, 2021. "Modelling Low-Frequency Covariability of Paleoclimatic Data," Working Papers 2022_17, Business School - Economics, University of Glasgow.
  • Handle: RePEc:gla:glaewp:2022_17
    as

    Download full text from publisher

    File URL: https://www.gla.ac.uk/media/Media_1045851_smxx.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Isaac Miller, 2019. "Testing Cointegrating Relationships Using Irregular and Non‐Contemporaneous Series with an Application to Paleoclimate Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 936-950, November.
    2. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    3. Castle, Jennifer L. & Hendry, David F., 2020. "Climate Econometrics: An Overview," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(3-4), pages 145-322, August.
    4. James E. H. Davidson & David B. Stephenson & Alemtsehai A. Turasie, 2016. "Time series modeling of paleoclimate data," Environmetrics, John Wiley & Sons, Ltd., vol. 27(1), pages 55-65, February.
    5. Ulrich K. Müller & Mark W. Watson, 2016. "Measuring Uncertainty about Long-Run Predictions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1711-1740.
    6. Samuel L. Jaccard & Eric D. Galbraith & Alfredo Martínez-García & Robert F. Anderson, 2016. "Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age," Nature, Nature, vol. 530(7589), pages 207-210, February.
    7. Laetitia Loulergue & Adrian Schilt & Renato Spahni & Valérie Masson-Delmotte & Thomas Blunier & Bénédicte Lemieux & Jean-Marc Barnola & Dominique Raynaud & Thomas F. Stocker & Jérôme Chappellaz, 2008. "Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years," Nature, Nature, vol. 453(7193), pages 383-386, May.
    8. Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
    9. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    2. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
    3. John K. Dagsvik & Mariachiara Fortuna & Sigmund Hov Moen, 2020. "How does temperature vary over time?: evidence on the stationary and fractal nature of temperature fluctuations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 883-908, June.
    4. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    5. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    6. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    7. Taeyoung Doh, 2017. "Trend and Uncertainty in the Long-Term Real Interest Rate: Bayesian Exponential Tilting with Survey Data," Research Working Paper RWP 17-8, Federal Reserve Bank of Kansas City.
    8. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    9. Luis A. Gil-Alana & Laura Sauci, 2019. "Temperatures across Europe: evidence of time trends," Climatic Change, Springer, vol. 157(3), pages 355-364, December.
    10. Rea, William & Reale, Marco & Brown, Jennifer & Oxley, Les, 2011. "Long memory or shifting means in geophysical time series?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1441-1453.
    11. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    12. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    13. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    14. Kurt Graden Lunsford & Kenneth D. West, 2023. "Random Walk Forecasts of Stationary Processes Have Low Bias," Working Papers 23-18, Federal Reserve Bank of Cleveland.
    15. Andrew T. Foerster & Andreas Hornstein & Pierre-Daniel G. Sarte & Mark W. Watson, 2022. "Aggregate Implications of Changing Sectoral Trends," Journal of Political Economy, University of Chicago Press, vol. 130(12), pages 3286-3333.
    16. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Manveer Kaur Mangat & Erhard Reschenhofer, 2020. "Frequency-Domain Evidence for Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-15, July.
    19. Burak Alparslan Eroğlu & J. Isaac Miller & Taner Yiğit, 2022. "Time-varying cointegration and the Kalman filter," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 1-21, January.
    20. Giuliano Curatola & Michael Donadelli & Patrick Gruning & Christoph Meinerding, 2016. "Investment-Specific Shocks, Business Cycles, and Asset Prices," Bank of Lithuania Working Paper Series 36, Bank of Lithuania.

    More about this item

    Keywords

    Paleoclimate data; Glaciar cycles; Equilibrium climate sensitivity; Low frequency analysis.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2022_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Business School Research Team (email available below). General contact details of provider: https://edirc.repec.org/data/dpglauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.