IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v530y2016i7589d10.1038_nature16514.html
   My bibliography  Save this article

Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age

Author

Listed:
  • Samuel L. Jaccard

    (Institute of Geological Sciences, University of Bern
    Oeschger Center for Climate Change Research, University of Bern)

  • Eric D. Galbraith

    (McGill University
    Institució Catalana de Recerca i Estudis Avançats (ICREA)
    Universitat Autonoma de Barcelona)

  • Alfredo Martínez-García

    (Geological Institute, ETH Zurich
    Max Planck Institute for Chemistry)

  • Robert F. Anderson

    (Lamont-Doherty Earth Observatory of Columbia University)

Abstract

A reconstruction of changes in ocean oxygenation throughout the last glacial cycle shows that respired carbon was removed from the deep Southern Ocean during deglaciation and Antarctic warm events, consistent with a prominent role of reduced iron fertilization and enhanced ocean ventilation, modifying atmospheric carbon dioxide concentrations over the past 80,000 years.

Suggested Citation

  • Samuel L. Jaccard & Eric D. Galbraith & Alfredo Martínez-García & Robert F. Anderson, 2016. "Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age," Nature, Nature, vol. 530(7589), pages 207-210, February.
  • Handle: RePEc:nat:nature:v:530:y:2016:i:7589:d:10.1038_nature16514
    DOI: 10.1038/nature16514
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16514
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao Chang & Babette A. A. Hoogakker & David Heslop & Xiang Zhao & Andrew P. Roberts & Patrick Deckker & Pengfei Xue & Zhaowen Pei & Fan Zeng & Rong Huang & Baoqi Huang & Shishun Wang & Thomas A. Bern, 2023. "Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. James A. Menking & Sarah A. Shackleton & Thomas K. Bauska & Aron M. Buffen & Edward J. Brook & Stephen Barker & Jeffrey P. Severinghaus & Michael N. Dyonisius & Vasilii V. Petrenko, 2022. "Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:530:y:2016:i:7589:d:10.1038_nature16514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.