IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/34757.html
   My bibliography  Save this paper

Score-driven threshold ice-age models: benchmark models for long-run climate forecasts

Author

Abstract

Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those longrun nonlinear climate effects. The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered by the Milankovitch cycles are eccentricity of Earth's orbit, obliquity, and precession of the equinox. We show that our new score-driven threshold ice-age models improve the statistical inference and forecasting performance of competing ice-age models from the literature. The drawback of using our 1,000-year frequency observations, is that we cannot measure the nonlinear climate effects of humanity created during the last 250 years, which are known to have generated abrupt structural changes in the Earth's climate, due to unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without the impact of humanity on climate, we predict the existence of turning points in the evolution of the three climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in atmospheric CO2 level and Antarctic land surface temperature.

Suggested Citation

  • Blazsek, Szabolcs, 2022. "Score-driven threshold ice-age models: benchmark models for long-run climate forecasts," UC3M Working papers. Economics 34757, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:34757
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/f0db1aca-6249-4b46-b97c-ae171b442e2e/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    2. Hiroyuki Kasahara & Katsumi Shimotsu, 2018. "Testing the Number of Regimes in Markov Regime Switching Models," Papers 1801.06862, arXiv.org, revised Jan 2018.
    3. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, October.
    5. Szabolcs Blazsek & Alvaro Escribano, 2022. "Robust Estimation and Forecasting of Climate Change Using Score-Driven Ice-Age Models," Econometrics, MDPI, vol. 10(1), pages 1-29, February.
    6. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
    9. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Patent propensity, R&D and market competition: Dynamic spillovers of innovation leaders and followers," Journal of Econometrics, Elsevier, vol. 191(1), pages 145-163.
    10. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Score-driven dynamic patent count panel data models," Economics Letters, Elsevier, vol. 149(C), pages 116-119.
    11. Castle, Jennifer L. & Hendry, David F., 2020. "Climate Econometrics: An Overview," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(3-4), pages 145-322, August.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
    2. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    3. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    4. Neves, César & Fernandes, Cristiano & Hoeltgebaum, Henrique, 2017. "Five different distributions for the Lee–Carter model of mortality forecasting: A comparison using GAS models," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 48-57.
    5. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    6. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    7. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    8. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    9. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
    10. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    11. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    12. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    13. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    14. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    15. Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
    16. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    17. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    19. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    20. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.

    More about this item

    Keywords

    Climate Change;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:34757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.