IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v453y2008i7193d10.1038_nature06950.html
   My bibliography  Save this article

Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years

Author

Listed:
  • Laetitia Loulergue

    (Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France)

  • Adrian Schilt

    (Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland, and Oeschger Centre for Climate Change Research, University of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland)

  • Renato Spahni

    (Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland, and Oeschger Centre for Climate Change Research, University of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland
    Present addresses: Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom (R.S.); Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen OE, Denmark (T.B.))

  • Valérie Masson-Delmotte

    (Institut Pierre Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-University Versailles-Saint Quentin, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France)

  • Thomas Blunier

    (Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland, and Oeschger Centre for Climate Change Research, University of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland
    Present addresses: Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom (R.S.); Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen OE, Denmark (T.B.))

  • Bénédicte Lemieux

    (Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France)

  • Jean-Marc Barnola

    (Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France)

  • Dominique Raynaud

    (Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France)

  • Thomas F. Stocker

    (Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland, and Oeschger Centre for Climate Change Research, University of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland)

  • Jérôme Chappellaz

    (Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France)

Abstract

Cover caption The air bubbles trapped in the Antarctic Vostok and EPICA Dome C ice cores provide composite records of levels of atmospheric carbon dioxide and methane covering the past 650,000 years. Now the record of atmospheric carbon dioxide and methane concentrations has been extended by two more complete glacial cycles to 800,000 years ago. The new data are from the lowest 200 metres of the Dome C core. This ice core went down to just a few metres above bedrock at a depth of 3,260 metres. Two papers report analyses of this deep ice, including the lowest carbon dioxide concentration so far measured in an ice core. Atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout the eight glacial cycles, but with significantly lower concentrations between 650,000 and 750,000 years before present. The cover shows a strip of ice core from an Antarctic ice core from Berkner Island, this slice from a depth of 120 metres. Photo by Chris Gilbert, British Antarctic Survey. Elsewhere in this issue, we move from climates past to future plans for climate prediction.

Suggested Citation

  • Laetitia Loulergue & Adrian Schilt & Renato Spahni & Valérie Masson-Delmotte & Thomas Blunier & Bénédicte Lemieux & Jean-Marc Barnola & Dominique Raynaud & Thomas F. Stocker & Jérôme Chappellaz, 2008. "Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years," Nature, Nature, vol. 453(7193), pages 383-386, May.
  • Handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature06950
    DOI: 10.1038/nature06950
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06950
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    2. David Hendry, 2010. "Climate Change: Lessons for our Future from the Distant Past," Economics Series Working Papers 485, University of Oxford, Department of Economics.
    3. Edward Armstrong & Miikka Tallavaara & Peter O. Hopcroft & Paul J. Valdes, 2023. "North African humid periods over the past 800,000 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    5. Gillian Brown & Peter Richerson, 2014. "Applying evolutionary theory to human behaviour: past differences and current debates," Journal of Bioeconomics, Springer, vol. 16(2), pages 105-128, July.
    6. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Andreas Koutsodendris & Vasilis Dakos & William J. Fletcher & Maria Knipping & Ulrich Kotthoff & Alice M. Milner & Ulrich C. Müller & Stefanie Kaboth-Bahr & Oliver A. Kern & Laurin Kolb & Polina Vakhr, 2023. "Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Lori Bruhwiler & Sourish Basu & James H. Butler & Abhishek Chatterjee & Ed Dlugokencky & Melissa A. Kenney & Allison McComiskey & Stephen A. Montzka & Diane Stanitski, 2021. "Observations of greenhouse gases as climate indicators," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    9. Vasco J.Gabriel & Luis F. Martins & Anthoulla Phella, 2021. "Modelling Low-Frequency Covariability of Paleoclimatic Data," Working Papers 2022_17, Business School - Economics, University of Glasgow.
    10. Carolyn W. Snyder, 2019. "Revised estimates of paleoclimate sensitivity over the past 800,000 years," Climatic Change, Springer, vol. 156(1), pages 121-138, September.
    11. Zhengquan Yao & Xuefa Shi & Qiuzhen Yin & Samuel Jaccard & Yanguang Liu & Zhengtang Guo & Sergey A. Gorbarenko & Kunshan Wang & Tianyu Chen & Zhipeng Wu & Qingyun Nan & Jianjun Zou & Hongmin Wang & Ji, 2024. "Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Martin H. Trauth & Asfawossen Asrat & Markus L. Fischer & Peter O. Hopcroft & Verena Foerster & Stefanie Kaboth-Bahr & Karin Kindermann & Henry F. Lamb & Norbert Marwan & Mark A. Maslin & Frank Schaeb, 2024. "Early warning signals of the termination of the African Humid Period(s)," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature06950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.