IDEAS home Printed from https://ideas.repec.org/p/gbl/wpaper/2019-03.html
   My bibliography  Save this paper

Animate the cluster or subsidize collaborative R&D? A multiple overlapping treatments approach to assess the impact of the French cluster policy

Author

Listed:
  • Mar, M.
  • Massard, N.

Abstract

This paper examines the effectiveness of the French competitiveness cluster policy on participating SMEs in terms of innovation and economic performance. Using an original dataset, we construct different measures of treatment with crossover designs. The findings indicate substantial additionality effects on R&D and employment and weak or insignificant effects on other types of economic performance. While only adhering to clusters induces much stronger positive impacts on SMEs than only participating in R&D collaborative projects, the policy is most effective when the two treatments are simultaneously used. To achieve its impact on SMEs, the cluster policy should not overlook low-cost instruments such as animation actions and common services.

Suggested Citation

  • Mar, M. & Massard, N., 2019. "Animate the cluster or subsidize collaborative R&D? A multiple overlapping treatments approach to assess the impact of the French cluster policy," Working Papers 2019-03, Grenoble Applied Economics Laboratory (GAEL).
  • Handle: RePEc:gbl:wpaper:2019-03
    as

    Download full text from publisher

    File URL: https://gael.univ-grenoble-alpes.fr/sites/default/files/Mediatheque/doc-recherche/WP/A2019/gael-2019-03.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
    2. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    3. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    4. Junichi Nishimura & Hiroyuki Okamuro, 2011. "R&D productivity and the organization of cluster policy: an empirical evaluation of the Industrial Cluster Project in Japan," The Journal of Technology Transfer, Springer, vol. 36(2), pages 117-144, April.
    5. Nishimura, Junichi & Okamuro, Hiroyuki, 2011. "Subsidy and networking: The effects of direct and indirect support programs of the cluster policy," Research Policy, Elsevier, vol. 40(5), pages 714-727, June.
    6. repec:hal:wpspec:info:hdl:2441/c8dmi8nm4pdjkuc9g8mc0ghsn is not listed on IDEAS
    7. Claire Dujardin & Virginie Louis & Florian Mayneris, 2015. "Les pôles de compétitivité wallons Quel impact sur les performances économiques des entreprises ? The Walloon competitiveness clusters and their impact on firms’ economic performances?," LIDAM Discussion Papers IRES 2015017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    8. Amel Ben Abdesslem & Raphaël Chiappini, 2019. "Cluster policy and firm performance: a case study of the French optic/photonic industry," Regional Studies, Taylor & Francis Journals, vol. 53(5), pages 692-705, May.
    9. Falck, Oliver & Heblich, Stephan & Kipar, Stefan, 2010. "Industrial innovation: Direct evidence from a cluster-oriented policy," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 574-582, November.
    10. Martin, Philippe & Mayer, Thierry & Mayneris, Florian, 2011. "Public support to clusters: A firm level study of French "Local Productive Systems"," Regional Science and Urban Economics, Elsevier, vol. 41(2), pages 108-123, March.
    11. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    12. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    13. Dirk Engel & Timo Mitze & Roberto Patuelli & Janina Reinkowski, 2013. "Does Cluster Policy Trigger R&D Activity? Evidence from German Biotech Contests," European Planning Studies, Taylor & Francis Journals, vol. 21(11), pages 1735-1759, November.
    14. Olivier Brossard & Inès Moussa, 2014. "The French cluster policy put to the test with differences-in-differences estimates," Economics Bulletin, AccessEcon, vol. 34(1), pages 520-529.
    15. Lee G. Branstetter & Mariko Sakakibara, 2002. "When Do Research Consortia Work Well and Why? Evidence from Japanese Panel Data," American Economic Review, American Economic Association, vol. 92(1), pages 143-159, March.
    16. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    17. Olivier Brossard & Inès Moussa, 2014. "The French cluster policy put to the test with differences-in-differences estimates," Post-Print halshs-01228857, HAL.
    18. Magali Chaudey & Marion Dessertine, 2016. "Impact sur l’emploi de la participation aux projets de R&D des pôles de compétitivité. Méthode et résultats," Working Papers 1626, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    19. repec:hal:pseose:hal-00975554 is not listed on IDEAS
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    21. Alexis Diamond & Jasjeet S. Sekhon, 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 932-945, July.
    22. Magali Chaudey & Marion Dessertine, 2018. "Impact sur l’emploi de la participation aux projets de R&D des pôles de compétitivité. Méthode et résultats," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 73-98.
    23. Lionel Fontagné & Pamina Koenig & Florian Mayneris & Sandra Poncet, 2013. "Cluster Policies And Firm Selection: Evidence From France," Journal of Regional Science, Wiley Blackwell, vol. 53(5), pages 897-922, December.
    24. Sekhon, Jasjeet S., 2011. "Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i07).
    25. Lionel Fontagné & Pamina Koenig & Florian Mayneris & Sandra Poncet, 2013. "Cluster Policies And Firm Selection: Evidence From France," Journal of Regional Science, Wiley Blackwell, vol. 53(5), pages 897-922, December.
    26. Shahidur R. Khandker & Gayatri B. Koolwal & Hussain A. Samad, . "Handbook on Impact Evaluation : Quantitative Methods and Practices," World Bank Publications, The World Bank, number 2693, September.
    27. Sergio Afcha & Jose García-Quevedo, 2016. "The impact of R&D subsidies on R&D employment composition," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 25(6), pages 955-975.
    28. repec:hal:spmain:info:hdl:2441/c8dmi8nm4pdjkuc9g8mc0ghsn is not listed on IDEAS
    29. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    30. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
    31. Mark Freel & Rebecca Liu & Christian Rammer, 2019. "The export additionality of innovation policy," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(5), pages 1257-1277.
    32. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    33. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Basilico & Uwe Cantner & Holger Graf, 2023. "Policy influence in the knowledge space: a regional application," The Journal of Technology Transfer, Springer, vol. 48(2), pages 591-622, April.
    2. Raphaël CHIAPPINI & Sophie POMMET, 2023. "The impact of public support for innovation on SME performance and efficiency," Bordeaux Economics Working Papers 2023-06, Bordeaux School of Economics (BSE).
    3. Raquel Ortega-Argilés & Pei-Yu Yuan, 2024. "Do UK Research and Collaborations in R&I Promote Economic Prosperity and Levelling-up? An analysis of UKRI funding between 2004-2021," Working Papers 046, The Productivity Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Magali Chaudey & Marion Dessertine, 2016. "Impact sur l'emploi de la participation aux projets de R&D des pôles de compétitivité. Méthode et résultats," Working Papers halshs-01361349, HAL.
    4. Hiroyuki Okamuro & Junichi Nishimura, 2021. "Effects of multilevel policy mix of public R&D subsidies: Empirical evidence from Japanese local SMEs [The Impact of R&D Subsidies on R&D Employment Composition]," Science and Public Policy, Oxford University Press, vol. 48(6), pages 829-840.
    5. Christian Volpe Martincus, 2010. "Odyssey in International Markets: An Assessment of the Effectiveness of Export Promotion in Latin America and the Caribbean," IDB Publications (Books), Inter-American Development Bank, number 16458, February.
    6. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    7. Jérôme Ronchetti & Anthony Terriau, 2019. "Impact of unemployment on self-perceived health," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(6), pages 879-889, August.
    8. Volpe Martincus, Christian & Carballo, Jerónimo, 2010. "Beyond the average effects: The distributional impacts of export promotion programs in developing countries," Journal of Development Economics, Elsevier, vol. 92(2), pages 201-214, July.
    9. Nathan, Max, 2022. "Does light touch cluster policy work? Evaluating the tech city programme," Research Policy, Elsevier, vol. 51(9).
    10. Konan Alain N'Ghauran & Corinne Autant-Bernard, 2020. "Assessing the collaboration and network additionality of innovation policies: a counterfactual approach to the French cluster policy," Post-Print halshs-03128972, HAL.
    11. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    12. Caliendo, Marco & Mahlstedt, Robert & Mitnik, Oscar A., 2017. "Unobservable, but unimportant? The relevance of usually unobserved variables for the evaluation of labor market policies," Labour Economics, Elsevier, vol. 46(C), pages 14-25.
    13. Okamuro, Hiroyuki & Nishimura, Junichi, 2018. "Whose business is your project? A comparative study of different subsidy policy schemes for collaborative R&D," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 85-96.
    14. Wendimu, Mengistu Assefa & Henningsen, Arne & Gibbon, Peter, 2016. "Sugarcane Outgrowers in Ethiopia: “Forced” to Remain Poor?," World Development, Elsevier, vol. 83(C), pages 84-97.
    15. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    16. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    17. Volpe Martincus, Christian & Carballo, Jerónimo, 2010. "Beyond the average effects: The distributional impacts of export promotion programs in developing countries," Journal of Development Economics, Elsevier, vol. 92(2), pages 201-214, July.
    18. Hiroyuki Okamuro & Junichi Nishimura, 2020. "What Shapes Local Innovation Policies? Empirical Evidence from Japanese Cities," Administrative Sciences, MDPI, vol. 10(1), pages 1-22, February.
    19. Hiroyuki Okamuro & Junichi Nishimura, 2015. "Local Management of National Cluster Policies: Comparative Case Studies of Japanese, German, and French Biotechnology Clusters," Administrative Sciences, MDPI, vol. 5(4), pages 1-27, November.
    20. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.

    More about this item

    Keywords

    CLUSTER POLICY; MULTIPLE TREATMENTS; SMEs; POLICY EVALUATION; CONDITIONAL DIFFERENCE-IN-DIFFERENCE;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gbl:wpaper:2019-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adrien Hervouet (email available below). General contact details of provider: https://edirc.repec.org/data/inragfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.