IDEAS home Printed from https://ideas.repec.org/p/fpr/ifprid/2111.html
   My bibliography  Save this paper

Cattle, seaweed, and global greenhouse gas emissions

Author

Listed:
  • Nin-Pratt, Alejandro
  • Beveridge, Malcolm C. M.
  • Sulser, Timothy B.
  • Marwaha, Nisha
  • Stanley, Michele
  • Grisenthwaite, Robert
  • Phillips, Michael J.

Abstract

This study is a first attempt to estimate the impact of a red seaweed (Asparagopsis taxiformis) feed additive on total emissions from cattle and the feasibility of scaling up farmed seaweed production to meet projected demand from the livestock sector. The approach used for the analysis combines projections of supply and demand of beef and milk production to 2050 with a cattle herd model that allows calculation of animal categories by age and sex, animal weight and production, and feed intake and methane emissions from cattle. At the time of this study, the seaweed additive showed limited applicability in grazing systems as it has been used experimentally, mostly incorporated in mix rations for each treatment animal, with not enough evidence available at present to determine the time of decay of the active component in seaweed after consumption by animals with limited access to the additive. Given these limitations, this study assumes that the applicability of the seaweed additive could be extended in the future to most dairy systems via slow-release formulations that have already been developed for other CH4 inhibitors and that can be fed daily during milking time. Based on this assumption, the maximum potential reduction of enteric methane emissions of the new technology is analyzed by projecting a scenario where the seaweed additive is supplied globally to dairy cows. Results show that the seaweed additive could result in a reduction of up to 10 percent in total methane emissions from cattle compared to a No-Seaweed scenario. Most of this reduction was driven by decreased emissions in Latin America, South Asia, and sub-Saharan Africa. The estimated reduction in feed intake associated with the seaweed additive was equivalent to an annual reduction in grain consumption of approximately 50 kgs per cow, or US$5 billion in global cost savings per year. The total amount of dry seaweed needed to supply dairy cows in 2050 was estimated at 5 million metric tons per year, representing 18 percent of the world’s seaweed-farmed area. Simply assuming the sector’s long-term historical average growth rates, this production level might be reached in approximately 20 years, although there are still several open questions about production and technologies and high variability in production costs and producer prices, as A. taxiformis is not extensively produced at present. Available knowledge on seaweed production seems to suggest that, at least at the start, production of A. taxiformis will be by nearshore culture. Expansion of nearshore culture could result in site competition with established seaweed production, access to operational license and government approvals in several countries, licenses to use livestock feeds incorporating seaweed as a feed additive, and more research to demonstrate the safety and efficacy of the additive in accordance with country’s regulations. The best possibilities for the development of production A. taxiformis seem to be in South Asia, for its growing demand and production of dairy products, its importance in terms of global emissions, and its location near the best- and well-established seaweed production areas in Southeast Asia.

Suggested Citation

  • Nin-Pratt, Alejandro & Beveridge, Malcolm C. M. & Sulser, Timothy B. & Marwaha, Nisha & Stanley, Michele & Grisenthwaite, Robert & Phillips, Michael J., 2022. "Cattle, seaweed, and global greenhouse gas emissions," IFPRI discussion papers 2111, International Food Policy Research Institute (IFPRI).
  • Handle: RePEc:fpr:ifprid:2111
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10568/140842
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delgado, Christopher L. & Rosegrant, Mark W. & Meijer, Siet, 2001. "Livestock To 2020: The Revolution Continues," 2001: International Trade in Livestock Products Symposium, January 2001, Auckland, New Zealand 14560, International Agricultural Trade Research Consortium.
    2. Robinson, Sherman & Mason-D’Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurbanov, Sarvar & Mikayilov, Jeyhun I. & Mukhtarov, Shahriyar & Yagubov, Sakit, 2023. "Forecasting 2030 CO₂ reduction targets for Russia as a major emitter using different estimation scenarios," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26(1), pages 1-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    2. Nin-Pratt, A., 2018. "Technical and Environmental Efficiency of Water Use in Agriculture," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277486, International Association of Agricultural Economists.
    3. Springmann, Marco & Mason-D'Croz, Daniel & Robinson, Sherman & Wiebe, Keith & Scarborough, Peter, 2016. "The health co-benefits of a global greenhouse-gas tax on food," Conference papers 332766, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. De Pinto, Alessandro & Wiebe, Keith D. & Rosegrant, Mark W., 2016. "Climate change and agricultural policy options: A global-to-local approach," Policy briefs 978-089629-244-4, International Food Policy Research Institute (IFPRI).
    5. Stepanyan, Davit & Grethe, Harald & Zimmermann, Georg & Siddig, Khalid & Deppermann, Andre & Feuerbacher, Arndt & Luckmann, Jonas & Valin, Hugo & Nishizawa, Takamasa & Ermolieva, Tatiana & Havlik, Pet, 2019. "Multiple Rotations of Gaussian Quadratures: An Efficient Method for Uncertainty Analyses in Large-Scale Simulation Models," Conference papers 333052, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Nico, Gianluigi & Christiaensen, Luc, 2023. "Jobs, Food and Greening: Exploring Implications of the Green Transition for Jobs in the Agri-food System," Jobs Group Papers, Notes, and Guides 32579593, The World Bank.
    7. Kym Anderson, 2021. "Food policy in a more volatile climate and trade environment," Departmental Working Papers 2021-25, The Australian National University, Arndt-Corden Department of Economics.
    8. Syed Abu Shoaib & Mohammad Zaved Kaiser Khan & Nahid Sultana & Taufique H. Mahmood, 2021. "Quantifying Uncertainty in Food Security Modeling," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    9. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    10. Timsina, J. & Wolf, J. & Guilpart, N. & van Bussel, L.G.J. & Grassini, P. & van Wart, J. & Hossain, A. & Rashid, H. & Islam, S. & van Ittersum, M.K., 2018. "Can Bangladesh produce enough cereals to meet future demand?," Agricultural Systems, Elsevier, vol. 163(C), pages 36-44.
    11. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    12. Femenia, Fabienne, 2019. "A Meta-Analysis of the Price and Income Elasticities of Food Demand," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 68(2), June.
    13. Dorin, Bruno & Joly, Pierre-Benoît, 2020. "Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0," Land Use Policy, Elsevier, vol. 96(C).
    14. Purnomo, Herry & Okarda, Beni & Dermawan, Ahmad & Ilham, Qori Pebrial & Pacheco, Pablo & Nurfatriani, Fitri & Suhendang, Endang, 2020. "Reconciling oil palm economic development and environmental conservation in Indonesia: A value chain dynamic approach," Forest Policy and Economics, Elsevier, vol. 111(C).
    15. Rosegrant, Mark & Magalhaes, Eduardo & Valmonte-Santos, Rowena Andrea & Mason-D'Croz, Daniel, 2016. "Returns to Investment in Reducing Postharvest Food Losses and Increasing Agricultural Productivity Growth," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235879, Agricultural and Applied Economics Association.
    16. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    17. Kozicka, Marta & Gotor, Elisabetta & Ocimati, Walter & de Jager, Tamar & Kikulwe, Enoch & Groot, Jeroen C.J., 2020. "Responding to future regime shifts with agrobiodiversity: A multi-level perspective on small-scale farming in Uganda," Agricultural Systems, Elsevier, vol. 183(C).
    18. Seré, Carlos, 2020. "Investing Sustainably in African Livestock Development: Opportunities and Trade-Offs," Working Papers 305186, University of Bonn, Center for Development Research (ZEF).
    19. Gregory J. Scott & Athanasios Petsakos & Henry Juarez, 2019. "Climate change, food security, and future scenarios for potato production in India to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 43-56, February.
    20. Akram A. Khan & Nazli Bano, 2007. "Declining Indian Agricultural Trade in an Unequal World," Global Business Review, International Management Institute, vol. 8(1), pages 99-117, February.

    More about this item

    Keywords

    greenhouse gases; milk; livestock production; seaweeds; greenhouse gas emissions; beef; cattle; livestock; methane; climate change;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:ifprid:2111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.