InfoGram and Admissible Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Laura Blattner & Scott Nelson, 2021. "How Costly is Noise? Data and Disparities in Consumer Credit," Papers 2105.07554, arXiv.org.
- Blattner, Laura & Nelson, Scott, 2021. "How Costly Is Noise? Data and Disparities in Consumer Credit," Research Papers 3978, Stanford University, Graduate School of Business.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Sara Reardon, 2019. "Rise of Robot Radiologists," Nature, Nature, vol. 576(7787), pages 54-58, December.
- Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
- Wall, Larry D., 2018. "Some financial regulatory implications of artificial intelligence," Journal of Economics and Business, Elsevier, vol. 100(C), pages 55-63.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vitaly Meursault & Daniel Moulton & Larry Santucci & Nathan Schor, 2022. "One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas," Working Papers 22-39, Federal Reserve Bank of Philadelphia.
- Eglė Jakučionytė & Swapnil Singh, 2023.
"Emergence of subprime lending in minority neighborhoods,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(6), pages 1547-1583, November.
- Egle Jakucionyte & Swapnil Singh, 2021. "Emergence of Subprime Lending in Minority Neighborhoods," Bank of Lithuania Working Paper Series 94, Bank of Lithuania.
- Langenbucher, Katja, 2022. "Consumer credit in the age of AI: Beyond anti-discrimination law," SAFE Working Paper Series 369, Leibniz Institute for Financial Research SAFE.
- Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
- Olivier Armantier & Sebastian Doerr & Jon Frost & Andreas Fuster & Kelly Shue, 2024.
"Nothing to hide? Gender and age differences in willingness to share data,"
Swiss Finance Institute Research Paper Series
24-99, Swiss Finance Institute.
- Olivier Armantier & Sebastian Doerr & Jon Frost & Andreas Fuster & Kelly Shue, 2024. "Nothing to hide? Gender and age differences in the willingness to share data," BIS Working Papers 1187, Bank for International Settlements.
- Hurtado, Agustin & Sakong, Jung, 2022. "The effect of minority bank ownership on minority credit," Working Papers 325, The University of Chicago Booth School of Business, George J. Stigler Center for the Study of the Economy and the State.
- Stefania Albanesi & Domonkos F. Vamossy, 2024.
"Credit Scores: Performance and Equity,"
NBER Working Papers
32917, National Bureau of Economic Research, Inc.
- Stefania Albanesi & Domonkos F. Vamossy, 2024. "Credit Scores: Performance and Equity," Papers 2409.00296, arXiv.org.
- Sabrina T. Howell & Theresa Kuchler & David Snitkof & Johannes Stroebel & Jun Wong, 2021. "Lender Automation and Racial Disparities in Credit Access," NBER Working Papers 29364, National Bureau of Economic Research, Inc.
- Sabrina T. Howell & Theresa Kuchler & David Snitkof & Johannes Stroebel & Jun Wong, 2021.
"Racial Disparities in Access to Small Business Credit: Evidence from the Paycheck Protection Program,"
CESifo Working Paper Series
9345, CESifo.
- Ströbel, Johannes & Howell, Sabrina & Kuchler, Theresa & Snitkof, David, 2021. "Racial Disparities in Access to Small Business Credit: Evidence from the Paycheck Protection Program," CEPR Discussion Papers 16623, C.E.P.R. Discussion Papers.
- Nicholas Tenev, 2024. "De-Biasing Models of Biased Decisions: A Comparison of Methods Using Mortgage Application Data," Papers 2405.00910, arXiv.org.
- Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
- Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
- Greenwald, Daniel L. & Howell, Sabrina T. & Li, Cangyuan & Yimfor, Emmanuel, 2024. "Regulatory arbitrage or random errors? Implications of race prediction algorithms in fair lending analysis," Journal of Financial Economics, Elsevier, vol. 157(C).
- Cusato, Antonio & Castillo, José Luis & IDB Invest, 2023. "Access to Credit and the Expansion of Broadband Internet in Peru," IDB Publications (Working Papers) 12922, Inter-American Development Bank.
- Langenbucher, Katja, 2022. "Consumer credit in the age of AI: Beyond anti-discrimination law," LawFin Working Paper Series 42, Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin).
- Adel Javanmard & Jason D. Lee, 2020. "A flexible framework for hypothesis testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 685-718, July.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
- Mustafa Pamuk & Matthias Schumann, 2023. "Opening a New Era with Machine Learning in Financial Services? Forecasting Corporate Credit Ratings Based on Annual Financial Statements," IJFS, MDPI, vol. 11(3), pages 1-20, July.
- Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-23 (Big Data)
- NEP-CMP-2021-08-23 (Computational Economics)
- NEP-ISF-2021-08-23 (Islamic Finance)
- NEP-RMG-2021-08-23 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.07380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.