IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2001-17.html
   My bibliography  Save this paper

Incorporating event risk into value-at-risk

Author

Abstract

Event risk is the risk that a portfolio's value can be affected by large jumps in market prices. Event risk is synonymous with \"fat tails\" or \"jump risk\". Event risk is one component of \"specific risk\", defined by bank supervisors as the component of market risk not driven by market-wide shocks. Standard Value-at-Risk (VaR) models used by banks to measure market risk do not do a good job of capturing event risk. In this paper, I discuss the issues involved in incorporating event risk into VaR. To illustrate these issues, I develop a VaR model that incorporates event risk, which I call the Jump-VaR model. The Jump-VaR model uses any standard VaR model to handle \"ordinary\" price fluctuations and grafts on a simple model of price jumps. The effect is to \"fatten\" the tails of the distribution of portfolio returns that is used to estimate VaR, thus increasing VaR. I note that regulatory capital could rise or fall when jumps are added, since the increase in VaR would be offset by a decline in the regulatory capital multiplier on specific risk from 4 to 3. In an empirical application, I use the Jump-VaR model to compute VaR for two equity portfolios. I note that, in practice, special attention must be paid to the issues of correlated jumps and double-counting of jumps. As expected, the estimates of VaR increase when jumps are added. In some cases, the increases are substantial. As expected, VaR increases by more for the portfolio with more specific risk.

Suggested Citation

  • Michael S. Gibson, 2001. "Incorporating event risk into value-at-risk," Finance and Economics Discussion Series 2001-17, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2001-17
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2001/200117/200117abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2001/200117/200117pap.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 1999. "VaR without correlations for portfolios of derivative securities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 583-602, August.
    2. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    3. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    6. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    7. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
    8. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    2. Tracey Seslen & William C. Wheaton, 2010. "Contemporaneous Loan Stress and Termination Risk in the CMBS Pool: How “Ruthless” is Default?," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 38(2), pages 225-255, June.
    3. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    4. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    5. Basu, Sanjay, 2011. "Comparing simulation models for market risk stress testing," European Journal of Operational Research, Elsevier, vol. 213(1), pages 329-339, August.
    6. Marco Bee, 2007. "The asymptotic loss distribution in a fat-tailed factor model of portfolio credit risk," Department of Economics Working Papers 0701, Department of Economics, University of Trento, Italia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    2. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Sensitivity of Value at Risk estimation to NonNormality of returns and Market capitalization," MPRA Paper 56307, University Library of Munich, Germany, revised 26 May 2014.
    3. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    4. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    5. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    6. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    7. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    8. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
    9. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    10. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    11. John M. Maheu & Thomas McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
    12. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    13. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    14. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    15. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    16. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    17. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    18. Kaehler, Jürgen, 1991. "Modelling and forecasting exchange-rate volatility with ARCH-type models," ZEW Discussion Papers 91-02, ZEW - Leibniz Centre for European Economic Research.
    19. Wan-Hsiu Cheng, 2008. "Overestimation in the Traditional GARCH Model During Jump Periods," Economics Bulletin, AccessEcon, vol. 3(68), pages 1-20.
    20. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.

    More about this item

    Keywords

    Risk; Econometric models;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2001-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.