Smoothing quantile regressions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021. "Smoothing Quantile Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.
- Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2019. "Smoothing quantile regressions," Papers 1905.08535, arXiv.org, revised Aug 2019.
References listed on IDEAS
- Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
- Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
- Joel L. Horowitz, 1998.
"Bootstrap Methods for Median Regression Models,"
Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
- Joel L. Horowitz, 1996. "Bootstrap Methods for Median Regression Models," Econometrics 9608004, University Library of Munich, Germany.
- Chernozhukov, Victor & Hong, Han, 2003.
"An MCMC approach to classical estimation,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
- Victor Chernozhukov & Han Hong, 2023. "An MCMC Approach to Classical Estimation," Papers 2301.07782, arXiv.org.
- Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
- Whang, Yoon-Jae, 2006.
"Smoothed Empirical Likelihood Methods For Quantile Regression Models,"
Econometric Theory, Cambridge University Press, vol. 22(2), pages 173-205, April.
- Yoon-Jae Whang, 2003. "Smoothed Empirical Likelihood Methods for Quantile Regression Models," Econometrics 0310005, University Library of Munich, Germany.
- Yoon-Jae Whang, 2004. "Smoothed Empirical Likelihood Methods for Quantile Regression Models," Cowles Foundation Discussion Papers 1453, Cowles Foundation for Research in Economics, Yale University.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, September.
- Mehra, K. L. & Sudhakara Rao, M. & Upadrasta, S. P., 1991. "A smooth conditional quantile estimator and related applications of conditional empirical processes," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 151-179, May.
- Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013.
"Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications,"
Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
- Efang Kong & Oliver Linton & Yingcun Xia, 2011. "Global Bahadur representation for nonparametric censored regression quantiles and its applications," CeMMAP working papers CWP33/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- K. Cheung & Stephen Lee, 2010. "Bootstrap variance estimation for Nadaraya quantile estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 131-145, May.
- Samanta, M., 1989. "Non-parametric estimation of conditional quantiles," Statistics & Probability Letters, Elsevier, vol. 7(5), pages 407-412, April.
- Guerre, Emmanuel & Sabbah, Camille, 2012. "Uniform Bias Study And Bahadur Representation For Local Polynomial Estimators Of The Conditional Quantile Function," Econometric Theory, Cambridge University Press, vol. 28(1), pages 87-129, February.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
- Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- José A. F. Machado & Paulo Parente, 2005. "Bootstrap estimation of covariance matrices via the percentile method," Econometrics Journal, Royal Economic Society, vol. 8(1), pages 70-78, March.
- Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
- Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
- Goh, S.C. & Knight, K., 2009. "Nonstandard Quantile-Regression Inference," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1415-1432, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David M. Kaplan, 2022.
"Smoothed instrumental variables quantile regression,"
Stata Journal, StataCorp LP, vol. 22(2), pages 379-403, June.
- David M. Kaplan, 2023. "Smoothed instrumental variables quantile regression," Papers 2310.09013, arXiv.org.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Chen, Le-Yu & Lee, Sokbae, 2023.
"Sparse quantile regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
- Le-Yu Chen & Sokbae (Simon) Lee, 2020. "Sparse Quantile Regression," CeMMAP working papers CWP30/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae Lee, 2020. "Sparse Quantile Regression," Papers 2006.11201, arXiv.org, revised Mar 2023.
- Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
- Mario Forni & Luca Gambetti & Nicolò Maffei-Faccioli & Luca Sala, 2023. "The impact of financial shocks on the forecast distribution of output and inflation," Working Paper 2023/3, Norges Bank.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
- Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.
- Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2023. "Smoothing the Nonsmoothness," Papers 2309.16348, arXiv.org.
- Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
- Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
- He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
- Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
- Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
- Muller, Christophe, 2018.
"Heterogeneity and nonconstant effect in two-stage quantile regression,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
- Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
- Christophe Muller, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
- Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
- Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
- Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
- Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
- Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010.
"The trade-growth nexus in the developing countries: a quantile regression approach,"
Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
- Gilles Dufrénot & Valérie Mignon & Charalambos Tsangarides, 2009. "The Trade-Growth Nexus in the Developing Countries: a Quantile Regression Approach," Working Papers 2009-04, CEPII research center.
- de Castro, Luciano & Galvao, Antonio F. & Montes-Rojas, Gabriel, 2020. "Quantile selection in non-linear GMM quantile models," Economics Letters, Elsevier, vol. 195(C).
- José Manuel Pastor & Jose M. Pavía & Lorenzo Serrano & Emili Tortosa-Ausina, 2017.
"Rich regions, poor regions and bank branch deregulation in Spain,"
Regional Studies, Taylor & Francis Journals, vol. 51(11), pages 1678-1694, November.
- José Manuel Pastor & José Manuel Pavía & Lorenzo Serrano & Emili Tortosa-Ausina, 2016. "Rich regions, poor regions and bank branch deregulation in Spain," Working Papers 2016/02, Economics Department, Universitat Jaume I, Castellón (Spain).
- Lamarche, Carlos, 2011. "Measuring the incentives to learn in Colombia using new quantile regression approaches," Journal of Development Economics, Elsevier, vol. 96(2), pages 278-288, November.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2017-07-09 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:eesptd:457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/eegvfbr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.