IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v25y2009i05p1415-1432_09.html
   My bibliography  Save this article

Nonstandard Quantile-Regression Inference

Author

Listed:
  • Goh, S.C.
  • Knight, K.

Abstract

It is well known that conventional Wald-type inference in the context of quantile regression is complicated by the need to construct estimates of the conditional densities of the response variables at the quantile of interest. This note explores the possibility of circumventing the need to construct conditional density estimates in this context with scale statistics that are explicitly inconsistent for the underlying conditional densities. This method of studentization leads conventional test statistics to have limiting distributions that are nonstandard but have the convenient feature of depending explicitly on the user’s choice of smoothing parameter. These limiting distributions depend on the distribution of the conditioning variables but can be straightforwardly approximated by resampling.

Suggested Citation

  • Goh, S.C. & Knight, K., 2009. "Nonstandard Quantile-Regression Inference," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1415-1432, October.
  • Handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1415-1432_09
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609090719/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    2. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    3. Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021. "Smoothing Quantile Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.
    4. Kaplan, David M., 2015. "Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion," Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.
    5. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    6. Christis Katsouris, 2023. "Estimating Conditional Value-at-Risk with Nonstationary Quantile Predictive Regression Models," Papers 2311.08218, arXiv.org, revised Apr 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1415-1432_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.