IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i4p513-532.html
   My bibliography  Save this article

Non‐crossing quantile double‐autoregression for the analysis of streaming time series data

Author

Listed:
  • Rong Jiang
  • Siu Kai Choy
  • Keming Yu

Abstract

Many financial time series not only have varying structures at different quantile levels and exhibit the phenomenon of conditional heteroscedasticity at the same time but also arrive in the stream. Quantile double‐autoregression is very useful for time series analysis but faces challenges with model fitting of streaming data sets when estimating other quantiles in subsequent batches. This article proposes a renewable estimation method for quantile double‐autoregression analysis of streaming time series data due to its ability to break with storage barrier and computational barrier. Moreover, the proposed flexible parametric structure of the quantile function enables us to predict any interested quantile value without quantile curve crossing problem or keeping the desirable monotone property of the conditional quantile function. The proposed methods are illustrated using current data and the summary statistics of historical data. Theoretically, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data batches pooled into one data set, without additional condition. Simulation studies and an empirical example are presented to illustrate the finite sample performance of the proposed methods.

Suggested Citation

  • Rong Jiang & Siu Kai Choy & Keming Yu, 2024. "Non‐crossing quantile double‐autoregression for the analysis of streaming time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 513-532, July.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:4:p:513-532
    DOI: 10.1111/jtsa.12725
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12725
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Dong & Ling, Shiqing & Zakoïan, Jean-Michel, 2015. "Asymptotic inference in multiple-threshold double autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 415-427.
    2. Lan Luo & Peter X.‐K. Song, 2020. "Renewable estimation and incremental inference in generalized linear models with streaming data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 69-97, February.
    3. Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021. "Smoothing Quantile Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.
    4. Yuzhi Cai & Gabriel Montes‐Rojas & Jose Olmo, 2013. "Quantile Double AR Time Series Models for Financial Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 551-560, September.
    5. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    6. Paolo Frumento & Matteo Bottai, 2016. "Parametric modeling of quantile regression coefficient functions," Biometrics, The International Biometric Society, vol. 72(1), pages 74-84, March.
    7. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    8. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    9. Yuzhi Cai, 2016. "A General Quantile Function Model for Economic and Financial Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1173-1193, August.
    10. Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
    11. Paolo Frumento & Matteo Bottai & Iván Fernández-Val, 2021. "Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 783-797, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    3. Zhu, Huafeng & Zhang, Xingfa & Liang, Xin & Li, Yuan, 2017. "On a vector double autoregressive model," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 86-95.
    4. Zhu Huafeng & Zhang Xingfa & Liang Xin & Li Yuan, 2018. "Moving Average Model with an Alternative GARCH-Type Error," Journal of Systems Science and Information, De Gruyter, vol. 6(2), pages 165-177, April.
    5. Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
    6. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    7. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    8. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
    9. S. Ghasemzadeh & M. Ganjali & T. Baghfalaki, 2022. "Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1181-1202, December.
    10. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2023. "Smoothing the Nonsmoothness," Papers 2309.16348, arXiv.org.
    11. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
    12. Zhou, Zhiyong & Lin, Zhengyan, 2014. "Asymptotic theory for LAD estimation of moderate deviations from a unit root," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 25-32.
    13. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    14. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    15. Zhu, Qianqian & Zheng, Yao & Li, Guodong, 2018. "Linear double autoregression," Journal of Econometrics, Elsevier, vol. 207(1), pages 162-174.
    16. Huan Gong & Dong Li, 2020. "On the three‐step non‐Gaussian quasi‐maximum likelihood estimation of heavy‐tailed double autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 883-891, November.
    17. Nannan Ma & Hailin Sang & Guangyu Yang, 2023. "Least absolute deviation estimation for AR(1) processes with roots close to unity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 799-832, October.
    18. Francq, Christian & Zakoian, Jean-Michel, 2015. "Joint inference on market and estimation risks in dynamic portfolios," MPRA Paper 68100, University Library of Munich, Germany.
    19. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    20. Li, Dong & Tao, Yuxin & Yang, Yaxing & Zhang, Rongmao, 2023. "Maximum likelihood estimation for α-stable double autoregressive models," Journal of Econometrics, Elsevier, vol. 236(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:4:p:513-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.