IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i4p513-532.html
   My bibliography  Save this article

Non‐crossing quantile double‐autoregression for the analysis of streaming time series data

Author

Listed:
  • Rong Jiang
  • Siu Kai Choy
  • Keming Yu

Abstract

Many financial time series not only have varying structures at different quantile levels and exhibit the phenomenon of conditional heteroscedasticity at the same time but also arrive in the stream. Quantile double‐autoregression is very useful for time series analysis but faces challenges with model fitting of streaming data sets when estimating other quantiles in subsequent batches. This article proposes a renewable estimation method for quantile double‐autoregression analysis of streaming time series data due to its ability to break with storage barrier and computational barrier. Moreover, the proposed flexible parametric structure of the quantile function enables us to predict any interested quantile value without quantile curve crossing problem or keeping the desirable monotone property of the conditional quantile function. The proposed methods are illustrated using current data and the summary statistics of historical data. Theoretically, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data batches pooled into one data set, without additional condition. Simulation studies and an empirical example are presented to illustrate the finite sample performance of the proposed methods.

Suggested Citation

  • Rong Jiang & Siu Kai Choy & Keming Yu, 2024. "Non‐crossing quantile double‐autoregression for the analysis of streaming time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 513-532, July.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:4:p:513-532
    DOI: 10.1111/jtsa.12725
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12725
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:4:p:513-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.