IDEAS home Printed from https://ideas.repec.org/p/eus/wpaper/ec2014_06.html
   My bibliography  Save this paper

Near-Rational Expectations: How Far Are Surveys from Rationality?

Author

Listed:
  • Sergey Ivashchenko

Abstract

New simple forms of deviation from rational expectations (RE) are suggested: strong near-rational expectations (SNRE) and weak near-rational expectations (WNRE). The medium-scale DSGE model is estimated with the RE, the SNRE and the WNRE. It is estimated with and without observed from the surveys expectations. The quality of out-of-sample forecasts is estimated. It is shown that near-rational concept produce the same advantages as learning without its disadvantages. However, the DSGE model with the RE and the observed expectations with measurement errors can produce results that only slightly worse than with the WNRE. The influence of the observed expectations on the forecasting quality is analyzed.

Suggested Citation

  • Sergey Ivashchenko, 2014. "Near-Rational Expectations: How Far Are Surveys from Rationality?," EUSP Department of Economics Working Paper Series 2014/06, European University at St. Petersburg, Department of Economics.
  • Handle: RePEc:eus:wpaper:ec2014_06
    as

    Download full text from publisher

    File URL: https://eusp.org/sites/default/files/archive/ec_dep/wp/Ec-06_14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
    2. Lombardo, Giovanni & Vestin, David, 2008. "Welfare implications of Calvo vs. Rotemberg-pricing assumptions," Economics Letters, Elsevier, vol. 100(2), pages 275-279, August.
    3. Arturo Ormeño & Krisztina Molnár, 2015. "Using Survey Data of Inflation Expectations in the Estimation of Learning and Rational Expectations Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 673-699, June.
    4. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series 2014/02, European University at St. Petersburg, Department of Economics.
    5. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    6. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    7. Fabio Milani & Ashish Rajbhandari, 2012. "Expectation Formation and Monetary DSGE Models: Beyond the Rational Expectations Paradigm," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 253-288, Emerald Group Publishing Limited.
    8. Fabio Milani, 2012. "The Modeling of Expectations in Empirical DSGE Models: A Survey," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 3-38, Emerald Group Publishing Limited.
    9. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    10. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series Ec-02/14, European University at St. Petersburg, Department of Economics.
    11. Hall, Jamie, 2012. "Consumption dynamics in general equilibrium," MPRA Paper 43933, University Library of Munich, Germany.
    12. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilian DOBRESCU, 2020. "Self-fulfillment degree of economic expectations within an integrated space: The European Union case study," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Ivashchenko & Rangan Gupta, 2017. "Near-Rational Expectations: How Far are Surveys from Rationality?," Journal of Economics and Econometrics, Economics and Econometrics Society, vol. 60(1), pages 1-27.
    2. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series Ec-02/14, European University at St. Petersburg, Department of Economics.
    3. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    4. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    5. Çekin, Semih Emre & Ivashchenko, Sergey & Gupta, Rangan & Lee, Chien-Chiang, 2024. "Real-time forecast of DSGE models with time-varying volatility in GARCH form," International Review of Financial Analysis, Elsevier, vol. 93(C).
    6. Ivashchenko, S., 2013. "Dynamic Stochastic General Equilibrium Model with Banks and Endogenous Defaults of Firms," Journal of the New Economic Association, New Economic Association, vol. 19(3), pages 27-50.
    7. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    8. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series 2014/02, European University at St. Petersburg, Department of Economics.
    9. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    10. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    11. Poledna, Sebastian & Miess, Michael Gregor & Hommes, Cars & Rabitsch, Katrin, 2023. "Economic forecasting with an agent-based model," European Economic Review, Elsevier, vol. 151(C).
    12. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    13. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    14. Sergey Ivashchenko, 2015. "A 5-sector DSGE Model of Russia," EUSP Department of Economics Working Paper Series Ec-01/15, European University at St. Petersburg, Department of Economics.
    15. Skrove Falch, Nina & Nymoen, Ragnar, 2011. "The accuracy of a forecast targeting central bank," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-36.
    16. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
    17. Elias, Christopher J., 2022. "Adaptive learning with heterogeneous expectations in an estimated medium-scale New Keynesian model," Journal of Macroeconomics, Elsevier, vol. 71(C).
    18. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    19. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    20. Leith, Campbell & Moldovan, Ioana & Rossi, Raffaele, 2015. "Monetary and fiscal policy under deep habits," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 55-74.

    More about this item

    Keywords

    DSGE; out of sample forecasts; survey expectations; near-rational expectations;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eus:wpaper:ec2014_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mikhail Pakhnin (email available below). General contact details of provider: https://edirc.repec.org/data/feeusru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.