IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v22y2024i2d10.1007_s40953-024-00382-1.html
   My bibliography  Save this article

Role of Crude Oil in Determining the Price of Corn in the United States: A Non-parametric Approach

Author

Listed:
  • Subrata K. Mitra

    (Institute of Management Technology)

  • Debdatta Pal

    (Indian Institute of Management Lucknow)

Abstract

This paper explores the role of crude oil in determining corn prices for data on the weekly front future prices in the United States. With 38% of corn production allocated toward fuel ethanol, a possible effect of crude oil price variation on corn price fluctuations is theoretically indicated. To test this theory, two complementary approaches—a parametric multiple regression and a non-parametric multivariate adaptive regression splines approach are employed. Along with indicating a weak relationship between corn and crude oil prices, the results suggest that corn price responds nonlinearly to the changes in soybean and wheat prices.

Suggested Citation

  • Subrata K. Mitra & Debdatta Pal, 2024. "Role of Crude Oil in Determining the Price of Corn in the United States: A Non-parametric Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 395-420, June.
  • Handle: RePEc:spr:jqecon:v:22:y:2024:i:2:d:10.1007_s40953-024-00382-1
    DOI: 10.1007/s40953-024-00382-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-024-00382-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-024-00382-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aboura, Sofiane & Chevallier, Julien, 2014. "Cross-market index with Factor-DCC," Economic Modelling, Elsevier, vol. 40(C), pages 158-166.
    2. Saghaian, Sayed H., 2010. "The Impact of the Oil Sector on Commodity Prices: Correlation or Causation?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(3), pages 477-485, August.
    3. David Zilberman & Gal Hochman & Deepak Rajagopal & Steve Sexton & Govinda Timilsina, 2013. "The Impact of Biofuels on Commodity Food Prices: Assessment of Findings," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 275-281.
    4. Kumar, Pawan & Singh, Vipul Kumar & Rao, Sandeep, 2023. "Does the substitution effect lead to feedback effect linkage between ethanol, crude oil, and soft agricultural commodities?," Energy Economics, Elsevier, vol. 119(C).
    5. Christopher L. Gilbert, 2010. "How to Understand High Food Prices," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 398-425, June.
    6. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    7. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    8. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    9. Baek, Jungho & Koo, Won W., 2014. "On the upsurge of U.S. food prices revisited," Economic Modelling, Elsevier, vol. 42(C), pages 272-276.
    10. Han, Liyan & Zhou, Yimin & Yin, Libo, 2015. "Exogenous impacts on the links between energy and agricultural commodity markets," Energy Economics, Elsevier, vol. 49(C), pages 350-358.
    11. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    12. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    13. Hanson, Kenneth & Robinson, Sherman & Schluter, Gerald E., 1993. "Sectoral Effects Of A World Oil Price Shock: Economywide Linkages To The Agricultural Sector," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-21, July.
    14. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    15. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    16. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    17. Rafiq, Shuddhasattwa & Bloch, Harry, 2016. "Explaining commodity prices through asymmetric oil shocks: Evidence from nonlinear models," Resources Policy, Elsevier, vol. 50(C), pages 34-48.
    18. repec:oup:ecpoli:v:29:y:2014:i:80:p:691-747 is not listed on IDEAS
    19. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    20. Berger, Theo & Uddin, Gazi Salah, 2016. "On the dynamic dependence between equity markets, commodity futures and economic uncertainty indexes," Energy Economics, Elsevier, vol. 56(C), pages 374-383.
    21. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2010. "Modeling the relationship between the oil price and global food prices," Applied Energy, Elsevier, vol. 87(8), pages 2517-2525, August.
    22. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    23. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    24. Debdatta Pal & Subrata K. Mitra, 2017. "Diesel and soybean price relationship in the USA: evidence from a quantile autoregressive distributed lag model," Empirical Economics, Springer, vol. 52(4), pages 1609-1626, June.
    25. Mensi, Walid & Hammoudeh, Shawkat & Kang, Sang Hoon, 2015. "Precious metals, cereal, oil and stock market linkages and portfolio risk management: Evidence from Saudi Arabia," Economic Modelling, Elsevier, vol. 51(C), pages 340-358.
    26. Wang, Jian & Shao, Wei & Kim, Junseok, 2020. "Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    27. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    28. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    29. Cha, Kyung Soo & Bae, Jeong Hwan, 2011. "Dynamic impacts of high oil prices on the bioethanol and feedstock markets," Energy Policy, Elsevier, vol. 39(2), pages 753-760, February.
    30. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    31. repec:dau:papers:123456789/13247 is not listed on IDEAS
    32. Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Can agricultural and precious metal commodities diversify and hedge extreme downside and upside oil market risk? An extreme quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 588-601.
    33. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    34. Fowowe, Babajide, 2016. "Do oil prices drive agricultural commodity prices? Evidence from South Africa," Energy, Elsevier, vol. 104(C), pages 149-157.
    35. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    36. repec:lic:licosd:29211 is not listed on IDEAS
    37. Debdatta Pal & Subrata Kumar Mitra, 2020. "Time-frequency dynamics of return spillover from crude oil to agricultural commodities," Applied Economics, Taylor & Francis Journals, vol. 52(49), pages 5426-5445, October.
    38. Clark Lundberg & Tristan Skolrud & Bahram Adrangi & Arjun Chatrath, 2021. "Oil Price Pass through to Agricultural Commodities†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 721-742, March.
    39. Natanelov, Valeri & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2013. "Crude oil–corn–ethanol – nexus: A contextual approach," Energy Policy, Elsevier, vol. 63(C), pages 504-513.
    40. Dimitrios Dimitriadis & Constantinos Katrakilidis, 2020. "An empirical analysis of the dynamic interactions among ethanol, crude oil and corn prices in the US market," Annals of Operations Research, Springer, vol. 294(1), pages 47-57, November.
    41. Hassouneh, Islam & Serra, Teresa & Goodwin, Barry K. & Gil, José M., 2012. "Non-parametric and parametric modeling of biodiesel, sunflower oil, and crude oil price relationships," Energy Economics, Elsevier, vol. 34(5), pages 1507-1513.
    42. Feng Wu & Zhengfei Guan & Robert J. Myers, 2011. "Volatility spillover effects and cross hedging in corn and crude oil futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1052-1075, November.
    43. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    44. Chang, Ting-Huan & Su, Hsin-Mei, 2010. "The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods," Energy, Elsevier, vol. 35(7), pages 2807-2813.
    45. Jian Yang & Zheng Li & Hong Miao, 2021. "Volatility spillovers in commodity futures markets: A network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1959-1987, December.
    46. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    47. Rehman, Mobeen Ur & Bouri, Elie & Eraslan, Veysel & Kumar, Satish, 2019. "Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    48. Robert J. Myers & Stanley R. Johnson & Michael Helmar & Harry Baumes, 2014. "Long-run and Short-run Co-movements in Energy Prices and the Prices of Agricultural Feedstocks for Biofuel," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 991-1008.
    49. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    50. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    2. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    3. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    5. Pal, Debdatta & Mitra, Subrata K., 2017. "Time-frequency contained co-movement of crude oil and world food prices: A wavelet-based analysis," Energy Economics, Elsevier, vol. 62(C), pages 230-239.
    6. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    7. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    8. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    9. Debdatta Pal & Subrata K. Mitra, 2017. "Diesel and soybean price relationship in the USA: evidence from a quantile autoregressive distributed lag model," Empirical Economics, Springer, vol. 52(4), pages 1609-1626, June.
    10. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    11. Sergio Adriani David & Claudio M. C. Inácio & José A. Tenreiro Machado, 2019. "Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    12. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    13. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    14. Tanaka, Tetsuji & Guo, Jin & Wang, Xiufang, 2023. "Did biofuel production strengthen the comovements between food and fuel prices? Evidence from ethanol-related markets in the United States," Renewable Energy, Elsevier, vol. 217(C).
    15. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    16. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    17. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    18. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    19. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    20. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).

    More about this item

    Keywords

    Nonlinear price transmission; Crude oil price; Agricultural prices; MARS; JEL classification: C22; Q41; Q16;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:22:y:2024:i:2:d:10.1007_s40953-024-00382-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.