IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/571.html
   My bibliography  Save this paper

Understanding the role of marketing communications in direct marketing

Author

Listed:
  • Naik, P.
  • Piersma, N.

Abstract

The standard RFM models used by direct marketers include behavioral variables, but ignore the role of marketing communications. In addition, RFM models allow customer responsiveness to vary across different customers, but not across diiferent time periods. Hence, the authors first extend RFM models by incorporating the effects of marketing communications and temporal heterogeneity. Then, using direct-marketing data from a Dutch charity organization, they calibrate the proposed model, and find that it better explains customer behavior because it includes information on both the past behavior and marketing communications. More specifically, they show that direct mail communication builds goodwill, which, in turn, enhances customer's likelihood to buy. However, cumulative exposure to direct mail creates irritation, and erodes goodwill. The two opposite effects induce a cyclic pattern of goodwill formation, which repeats over four quarters. Next, the authors find that, when they control for these communications effects, the standard result - customer's likelihood to buy increases as shopping frequency increases - reverses. That is, in contrast to the extant literature, customers who donate frequently are less likely to donate in the near future. These findings are not only stable over time, but also replicate across two large data sets. Finally, the authors discuss the need for implementing pulsing strategy to mitigate irritation, and the possibility of practicing one-to-one marketing by using information on customer responsiveness, which can be estimated for each customer via the proposed model.

Suggested Citation

  • Naik, P. & Piersma, N., 2002. "Understanding the role of marketing communications in direct marketing," Econometric Institute Research Papers EI 2002-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:571
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/571/feweco20020501140152.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Marian C & Edell, Julie A, 1986. "Ad Reactions over Time: Capturing Changes in the Real World," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(1), pages 114-118, June.
    2. Rosbergen, Edward & Pieters, Rik & Wedel, Michel, 1997. "Visual Attention to Advertising: A Segment-Level Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(3), pages 305-314, December.
    3. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
    4. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    5. Vijay Mahajan & Eitan Muller, 1986. "Advertising Pulsing Policies for Generating Awareness for New Products," Marketing Science, INFORMS, vol. 5(2), pages 89-106.
    6. Wedel, M, et al, 1993. "A Latent Class Poisson Regression Model for Heterogeneous Count Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 397-411, Oct.-Dec..
    7. Vijay Mahajan & Eitan Muller, 1986. "Reply—Reflections on Advertising Pulsing Policies for Generating Awareness for New Products," Marketing Science, INFORMS, vol. 5(2), pages 110-111.
    8. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    9. Tanizaki, Hisashi, 1993. "Kalman Filter Model with Qualitative Dependent Variables," The Review of Economics and Statistics, MIT Press, vol. 75(4), pages 747-752, November.
    10. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    11. Robert P. Leone, 1995. "Generalizing What Is Known About Temporal Aggregation and Advertising Carryover," Marketing Science, INFORMS, vol. 14(3_supplem), pages 141-150.
    12. Rosbergen, E. & Pieters, R. & Wedel, M., 1997. "Visual attention to advertising : A segment-level analysis," Other publications TiSEM c77552c4-5b16-4ecb-8a21-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schröder, Nadine & Hruschka, Harald, 2016. "Investigating the effects of mailing variables and endogeneity on mailing decisions," European Journal of Operational Research, Elsevier, vol. 250(2), pages 579-589.
    2. van Diepen, Merel & Donkers, Bas & Franses, Philip Hans, 2009. "Does irritation induced by charitable direct mailings reduce donations?," International Journal of Research in Marketing, Elsevier, vol. 26(3), pages 180-188.
    3. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    4. Vafainia, Saeid & Breugelmans, Els & Bijmolt, Tammo, 2019. "Calling Customers to Take Action: The Impact of Incentive and Customer Characteristics on Direct Mailing Effectiveness," Journal of Interactive Marketing, Elsevier, vol. 45(C), pages 62-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    2. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    3. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    4. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    5. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    6. Luzon, Yossi & Pinchover, Rotem & Khmelnitsky, Eugene, 2022. "Dynamic budget allocation for social media advertising campaigns: optimization and learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 223-234.
    7. Huang, Jian & Leng, Mingming & Liang, Liping, 2012. "Recent developments in dynamic advertising research," European Journal of Operational Research, Elsevier, vol. 220(3), pages 591-609.
    8. Mesak, Hani I. & Ellis, T. Selwyn, 2009. "On the superiority of pulsing under a concave advertising market potential function," European Journal of Operational Research, Elsevier, vol. 194(2), pages 608-627, April.
    9. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    10. Navdeep S. Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    11. Drèze, Xavier & Bonfrer, André, 2008. "An empirical investigation of the impact of communication timing on customer equity," Journal of Interactive Marketing, Elsevier, vol. 22(1), pages 36-50.
    12. Jianan Wu & Victor J. Cook & Edward C. Strong, 2005. "A Two-Stage Model of the Promotional Performance of Pure Online Firms," Information Systems Research, INFORMS, vol. 16(4), pages 334-351, December.
    13. Michael Braun & Wendy W. Moe, 2013. "Online Display Advertising: Modeling the Effects of Multiple Creatives and Individual Impression Histories," Marketing Science, INFORMS, vol. 32(5), pages 753-767, September.
    14. Landry, Peter, 2022. "Pricing, advertising, and endogenous consideration of an “insistent” product," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    15. Gijsenberg, Maarten & Nijs, Vincent R., 2018. "Advertising Timing," Research Report 2018004-MARK, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    17. Gijsenberg, Maarten J. & Nijs, Vincent R., 2019. "Advertising spending patterns and competitor impact," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 232-250.
    18. Försch, Steffen & de Haan, Evert, 2018. "Targeting online display ads: Choosing their frequency and spacing," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 661-672.
    19. Mesak, Hani Ibrahim & Bari, Abdullahel & Lian, Qin, 2015. "Pulsation in a competitive model of advertising-firm's cost interaction," European Journal of Operational Research, Elsevier, vol. 246(3), pages 916-926.
    20. Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.