IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i2p579-589.html
   My bibliography  Save this article

Investigating the effects of mailing variables and endogeneity on mailing decisions

Author

Listed:
  • Schröder, Nadine
  • Hruschka, Harald

Abstract

Determining the optimal amount of mailings being sent to customers is crucial. However, this decision depends on various aspects. First, it is important to specify relevant mailing variables. By distinguishing different types of mailings and considering their sizes, we set our study apart from the majority of existing studies. To deal with unobserved heterogeneity we estimate a Mixture of Dirichlet Processes (MDP) whose components are Tobit-2 models. A policy function approach is used to take endogeneity into account. We investigate whether and how consideration of endogeneity leads to different managerial implications. To this end, we determine mailings by dynamic optimization for three individual customers which are prototypical for the segments discovered by the MDP model. We find out that mailings should be avoided altogether more frequently for all three customer types according to the model which takes endogeneity into account.

Suggested Citation

  • Schröder, Nadine & Hruschka, Harald, 2016. "Investigating the effects of mailing variables and endogeneity on mailing decisions," European Journal of Operational Research, Elsevier, vol. 250(2), pages 579-589.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:579-589
    DOI: 10.1016/j.ejor.2015.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baumgartner, Bernhard & Hruschka, Harald, 2005. "Allocation of catalogs to collective customers based on semiparametric response models," European Journal of Operational Research, Elsevier, vol. 162(3), pages 839-849, May.
    2. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    3. Deb Campbell & Randy Erdahl & Doug Johnson & Eric Bibelnieks & Michael Haydock & Mark Bullock & Harlan Crowder, 2001. "Optimizing Customer Mail Streams at Fingerhut," Interfaces, INFORMS, vol. 31(1), pages 77-90, February.
    4. Jacoby, Jacob & Speller, Donald E & Berning, Carol A Kohn, 1974. "Brand Choice Behavior as a Function of Information Load: Replication and Extension," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 1(1), pages 33-42, June.
    5. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    6. Hruschka, Harald, 2010. "Considering endogeneity for optimal catalog allocation in direct marketing," European Journal of Operational Research, Elsevier, vol. 206(1), pages 239-247, October.
    7. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    8. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    9. Pradeep Chintagunta & Tülin Erdem & Peter E. Rossi & Michel Wedel, 2006. "Structural Modeling in Marketing: Review and Assessment," Marketing Science, INFORMS, vol. 25(6), pages 604-616, 11-12.
    10. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    11. Peter T. L. Popkowski Leszczyc & Frank M. Bass, 1998. "Determining the effects of observed and unobserved heterogeneity on consumer brand choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(2), pages 95-115, June.
    12. Chun, Young H., 2012. "Monte Carlo analysis of estimation methods for the prediction of customer response patterns in direct marketing," European Journal of Operational Research, Elsevier, vol. 217(3), pages 673-678.
    13. Naik, P. & Piersma, N., 2002. "Understanding the role of marketing communications in direct marketing," Econometric Institute Research Papers EI 2002-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    3. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
    2. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    3. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    4. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    5. Haupt, Johannes & Lessmann, Stefan, 2020. "Targeting Cutsomers Under Response-Dependent Costs," IRTG 1792 Discussion Papers 2020-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Jonker, J.-J. & Piersma, N. & Van den Poel, D., 2002. "Joint optimization of customer segmentation and marketing policy to maximize long-term profitability," Econometric Institute Research Papers EI 2002-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    8. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    9. Piersma, Nanda & Jonker, Jedid-Jah, 2004. "Determining the optimal direct mailing frequency," European Journal of Operational Research, Elsevier, vol. 158(1), pages 173-182, October.
    10. van Diepen, Merel & Donkers, Bas & Franses, Philip Hans, 2009. "Does irritation induced by charitable direct mailings reduce donations?," International Journal of Research in Marketing, Elsevier, vol. 26(3), pages 180-188.
    11. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    12. Thomas, Suman Ann & Feng, Shanfei & Krishnan, Trichy V., 2015. "To retain? To upgrade? The effects of direct mail on regular donation behavior," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 48-63.
    13. Mariia I. Okuneva & Dmitriy B. Potapov, 2015. "The Effectiveness of Individual Targeting Through Smartphone Application in Retail: Evidence from Field Experiment," HSE Working papers WP BRP 47/MAN/2015, National Research University Higher School of Economics.
    14. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    15. Johannes Haupt & Stefan Lessmann, 2020. "Targeting customers under response-dependent costs," Papers 2003.06271, arXiv.org, revised Aug 2021.
    16. Peter Lenk, 2014. "Bayesian estimation of random utility models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 20, pages 457-497, Edward Elgar Publishing.
    17. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    18. Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.
    19. Bart Bronnenberg & Jean Dubé & Carl Mela & Paulo Albuquerque & Tulin Erdem & Brett Gordon & Dominique Hanssens & Guenter Hitsch & Han Hong & Baohong Sun, 2008. "Measuring long-run marketing effects and their implications for long-run marketing decisions," Marketing Letters, Springer, vol. 19(3), pages 367-382, December.
    20. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:579-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.