IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/39181.html
   My bibliography  Save this paper

Constrained Dual Scaling for Detecting Response Styles in Categorical Data

Author

Listed:
  • Schoonees, P.C.
  • van de Velden, M.
  • Groenen, P.J.F.

Abstract

Dual scaling is a multivariate exploratory method equivalent to correspondence analysis when analysing contingency tables. However, for the analysis of rating data different proposals appear in the dual scaling and correspondence analysis literature. It is shown here that a peculiarity of the dual scaling method can be exploited to detect differences in response styles. Response styles occur when respondents use rating scales differently for reasons not related to the questions, often biasing results. A spline-based constrained version of dual scaling is devised which can detect the presence of four prominent types of response styles, and is extended to allow for multiple response styles. An alternating nonnegative least squares algorithm is devised for estimating the parameters. The new method is appraised both by simulation studies and an empirical application.

Suggested Citation

  • Schoonees, P.C. & van de Velden, M. & Groenen, P.J.F., 2013. "Constrained Dual Scaling for Detecting Response Styles in Categorical Data," Econometric Institute Research Papers EI 2013-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:39181
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/39181/EI2013-10.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Hand, David J. & Krzanowski, Wojtek J., 2005. "Optimising k-means clustering results with standard software packages," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 969-973, June.
    3. van de Velden, Michel & Groenen, Patrick J.F. & Poblome, Jeroen, 2009. "Seriation by constrained correspondence analysis: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3129-3138, June.
    4. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    5. Timothy Johnson, 2003. "On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 563-583, December.
    6. van de Velden, M., 2007. "Detecting response styles by using dual scaling of successive categories," Econometric Institute Research Papers EI 2007-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Martijn Jong & Jan-Benedict Steenkamp, 2010. "Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 3-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter C. Schoonees & Patrick J. F. Groenen & Michel Velden, 2022. "Least-squares bilinear clustering of three-way data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 1001-1037, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    2. Joeri Hofmans & Eva Ceulemans & Douglas Steinley & Iven Mechelen, 2015. "On the Added Value of Bootstrap Analysis for K-Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 268-284, July.
    3. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    4. Schepers, Jan & van Mechelen, Iven & Ceulemans, Eva, 2006. "Three-mode partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1623-1642, December.
    5. Leisch, Friedrich, 2006. "A toolbox for K-centroids cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 526-544, November.
    6. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    7. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    8. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    9. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    10. Okhrin, Ostap & Ristig, Alexander, 2012. "Hierarchical Archimedean copulae: The HAC package," SFB 649 Discussion Papers 2012-036, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    12. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    14. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    15. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    16. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    17. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    18. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    19. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    20. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:39181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.