IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v49y2005i4p969-973.html
   My bibliography  Save this article

Optimising k-means clustering results with standard software packages

Author

Listed:
  • Hand, David J.
  • Krzanowski, Wojtek J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hand, David J. & Krzanowski, Wojtek J., 2005. "Optimising k-means clustering results with standard software packages," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 969-973, June.
  • Handle: RePEc:eee:csdana:v:49:y:2005:i:4:p:969-973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00203-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
    2. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leisch, Friedrich, 2006. "A toolbox for K-centroids cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 526-544, November.
    2. Joeri Hofmans & Eva Ceulemans & Douglas Steinley & Iven Mechelen, 2015. "On the Added Value of Bootstrap Analysis for K-Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 268-284, July.
    3. Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
    4. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    5. Pieter Schoonees & Michel Velden & Patrick Groenen, 2015. "Constrained Dual Scaling for Detecting Response Styles in Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 968-994, December.
    6. Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
    7. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
    8. Schepers, Jan & van Mechelen, Iven & Ceulemans, Eva, 2006. "Three-mode partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1623-1642, December.
    9. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ertl, Antal & Horn, Dániel & Kiss, Hubert János, 2024. "Economic Preferences across Generations and Family Clusters: A Comment," I4R Discussion Paper Series 105, The Institute for Replication (I4R).
    2. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. John C. McCabe-Dansted & Arkadii Slinko, 2006. "Exploratory Analysis of Similarities Between Social Choice Rules," Group Decision and Negotiation, Springer, vol. 15(1), pages 77-107, January.
    5. Ali Abdelzadeh, 2014. "The Impact of Political Conviction on the Relation Between Winning or Losing and Political Dissatisfaction," SAGE Open, , vol. 4(2), pages 21582440145, May.
    6. Gabriela Cecilia Stanciulescu & Gabriela Nicoleta Diaconescu & Dan Mihnea Diaconescu, 2015. "Health, Spa, Wellness Tourism. What is the Difference?," Knowledge Horizons - Economics, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 7(3), pages 158-161, September.
    7. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    8. Chang, Yuan-Chieh & Chen, Min-Nan, 2016. "Service regime and innovation clusters: An empirical study from service firms in Taiwan," Research Policy, Elsevier, vol. 45(9), pages 1845-1857.
    9. Hossain, Ferdaus & Onyango, Benjamin M. & Adelaja, Adesoji O. & Schilling, Brian J. & Hallman, William K., 2002. "Uncovering Factors Influencing Public Perceptions Of Food Biotechnology," Research Reports 18178, Rutgers University, Food Policy Institute.
    10. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    11. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    12. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    13. Glenn Milligan, 1981. "A monte carlo study of thirty internal criterion measures for cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 187-199, June.
    14. Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
    15. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    16. Layal Christine Lettry, 2023. "Clustering the Swiss Pension Register," FSES Working Papers 529, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    17. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    18. Marianna Mauro & Monica Giancotti & Giovanna Talarico, 2017. "Mapping the field: A bibliometric analysis of accountability literature in healthcare," MECOSAN, FrancoAngeli Editore, vol. 2017(101), pages 7-30.
    19. Johanna Mair & Julie Battilana & Julian Cardenas, 2012. "Organizing for Society: A Typology of Social Entrepreneuring Models," Journal of Business Ethics, Springer, vol. 111(3), pages 353-373, December.
    20. Kondo, Yumi & Salibian-Barrera, Matias & Zamar, Ruben, 2016. "RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i05).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:49:y:2005:i:4:p:969-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.