IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/19449.html
   My bibliography  Save this paper

Exchange Rate and Industrial Commodity Volatility Transmissions, Asymmetries and Hedging Strategies

Author

Listed:
  • Hammoudeh, S.M.
  • Yuan, Y.
  • McAleer, M.J.

Abstract

This paper examines the inclusion of the dollar/euro exchange rate together with four important and highly traded commodities - aluminum, copper, gold and oil- in symmetric and asymmetric multivariate GARCH and DCC models. The inclusion of exchange rate increases the significant direct and indirect past shock and volatility effects on future volatility between the commodities in all the models. Model 2, which includes the business cycle industrial metal copper and not aluminum, displays more direct and indirect transmissions than does Model 3, which replaces the business cycle-sensitive copper with the highly energy-intensive aluminum. The asymmetric effects are the greatest in Model 3 because of the high interactions between oil and aluminum. Optimal portfolios should have more euro currency than commodities, and more copper and gold than oil.

Suggested Citation

  • Hammoudeh, S.M. & Yuan, Y. & McAleer, M.J., 2010. "Exchange Rate and Industrial Commodity Volatility Transmissions, Asymmetries and Hedging Strategies," Econometric Institute Research Papers EI 2010-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:19449
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/19449/EI2010-35.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moschini, GianCarlo & Myers, Robert J., 2002. "Testing for constant hedge ratios in commodity markets: a multivariate GARCH approach," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 589-603, December.
    2. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Hammoudeh, Shawkat & Dibooglu, Sel & Aleisa, Eisa, 2004. "Relationships among U.S. oil prices and oil industry equity indices," International Review of Economics & Finance, Elsevier, vol. 13(4), pages 427-453.
    5. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
    6. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    7. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    9. Smith, Kenneth L & Bracker, Kevin, 2003. "Forecasting Changes in Copper Futures Volatility with GARCH Models Using an Iterated Algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 20(3), pages 245-265, May.
    10. Seung‐Ryong Yang & B. Wade Brorsen, 1993. "Nonlinear dynamics of daily futures prices: Conditional heteroskedasticity or chaos?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 175-191, April.
    11. Watkins, Clinton & McAleer, Michael, 2008. "How has volatility in metals markets changed?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 237-249.
    12. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    13. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    14. Plourde, André & Watkins, G. C., 1998. "Crude oil prices between 1985 and 1994: how volatile in relation to other commodities?," Resource and Energy Economics, Elsevier, vol. 20(3), pages 245-262, September.
    15. Bhar, Ramaprasad & Hammoudeh, Shawkat & Thompson, Mark A., 2008. "Component structure for nonstationary time series: Application to benchmark oil prices," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 971-983, December.
    16. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamad, Sharifah Fairuz Syed & Masih, Mansur, 2013. "An application of MGARCH-DCC analysis on selected currencies in terms of gold Price," MPRA Paper 62349, University Library of Munich, Germany.
    2. Mohamad, Sharifah Fairuz Syed & Masih, Mansur, 2013. "Gold price movements in selected currencies: wavelet approach," MPRA Paper 62347, University Library of Munich, Germany.
    3. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    4. Halova Wolfe, Marketa & Rosenman, Robert, 2014. "Bidirectional causality in oil and gas markets," Energy Economics, Elsevier, vol. 42(C), pages 325-331.
    5. Andi Duqi & Leonardo Franci & Giuseppe Torluccio, 2014. "The Black-Litterman model: the definition of views based on volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 24(19), pages 1285-1296, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shawkat M. Hammoudeh & Yuan Yuan & Michael McAleer, 2009. "Exchange Rate and Industrial Commodity Volatility Transmissions and Hedging Strategies," CARF F-Series CARF-F-172, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    3. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    4. Anton Bekkerman, 2011. "Time‐varying hedge ratios in linked agricultural markets," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(2), pages 179-200, August.
    5. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    6. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    8. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    9. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    10. Ahmed Ghorbel & Wajdi Hamma & Anis Jarboui, 2017. "Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1509-1542, July.
    11. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    12. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2010. "Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets," KIER Working Papers 717, Kyoto University, Institute of Economic Research.
    13. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    14. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    15. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    16. Chang, Chia-Lin & Hsu, Hui-Kuang & McAleer, Michael, 2013. "Is small beautiful? Size effects of volatility spillovers for firm performance and exchange rates in tourism," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 519-534.
    17. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    18. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    19. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2013. "Conditional correlations and volatility spillovers between crude oil and stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 116-138.
    20. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.

    More about this item

    Keywords

    MGARCH; asymmetries; hedging; shocks; transmission; volatility;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:19449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.