IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v49y2015i3p917-926.html
   My bibliography  Save this article

The approach of power priors for ability estimation in IRT models

Author

Listed:
  • Mariagiulia Matteucci
  • Bernard Veldkamp

Abstract

The aim of the paper is to propose the introduction of power prior distributions in the ability estimation of item response theory (IRT) models. In the literature, power priors have been proposed to integrate information coming from historical data with current data within Bayesian parameter estimation for generalized linear models. This approach allows to use a weighted posterior distribution based on the historical study as prior distribution for the parameters in the current study. Applications can be found especially in clinical trials and survival studies. Here, power priors are introduced within a Gibbs sampler scheme in the ability estimation step for a unidimensional IRT model. A Markov chain Monte Carlo algorithm is chosen for the high flexibility and possibility of extension to more complex models. The efficiency of the approach is demonstrated in terms of measurement precision by using data from the Hospital Anxiety and Depression Scale with a small sample. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Mariagiulia Matteucci & Bernard Veldkamp, 2015. "The approach of power priors for ability estimation in IRT models," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 917-926, May.
  • Handle: RePEc:spr:qualqt:v:49:y:2015:i:3:p:917-926
    DOI: 10.1007/s11135-014-0059-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-014-0059-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-014-0059-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    2. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    3. Azevedo, Caio L.N. & Andrade, Dalton F. & Fox, Jean-Paul, 2012. "A Bayesian generalized multiple group IRT model with model-fit assessment tools," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4399-4412.
    4. Paul Boeck, 2008. "Random Item IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 533-559, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    2. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    3. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    4. Sijia Huang & Li Cai, 2024. "Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 311-341, June.
    5. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    6. Lai-Fa Hung & Wen-Chung Wang, 2012. "The Generalized Multilevel Facets Model for Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 231-255, April.
    7. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    8. Azevedo, Caio L.N. & Andrade, Dalton F. & Fox, Jean-Paul, 2012. "A Bayesian generalized multiple group IRT model with model-fit assessment tools," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4399-4412.
    9. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    10. Jean-Paul Fox & Cees Glas, 2003. "Bayesian modeling of measurement error in predictor variables using item response theory," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 169-191, June.
    11. Steven Andrew Culpepper & Trevor Park, 2017. "Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 591-616, October.
    12. Hong Jiao, 2011. "J.-P. FOX (2010) Bayesian Item Response Modeling: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 360-362, April.
    13. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    14. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    15. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    16. Gonçalves, F.B. & Gamerman, D. & Soares, T.M., 2013. "Simultaneous multifactor DIF analysis and detection in Item Response Theory," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 144-160.
    17. Jiwei Zhang & Zhaoyuan Zhang & Jian Tao, 2021. "A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data," Computational Statistics, Springer, vol. 36(4), pages 2643-2669, December.
    18. Gunter Maris & Timo Bechger & Ernesto Martin, 2015. "A Gibbs Sampler for the (Extended) Marginal Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 859-879, December.
    19. Mariagiulia Matteucci & Bernard Veldkamp, 2013. "On the use of MCMC computerized adaptive testing with empirical prior information to improve efficiency," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 243-267, June.
    20. R. Klein Entink & J.-P. Fox & W. Linden, 2009. "A Multivariate Multilevel Approach to the Modeling of Accuracy and Speed of Test Takers," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 21-48, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:49:y:2015:i:3:p:917-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.