IDEAS home Printed from https://ideas.repec.org/p/ehl/wpaper/22504.html
   My bibliography  Save this paper

What happens to facts after their construction?: characteristics and functional roles of facts in the dissemination of knowledge across modelling communities

Author

Listed:
  • Mansnerus, Erika

Abstract

The core question addressed in this paper is: What happens to facts after their construction? The main contribution is to analyse the different practices of disseminating, circulating and crossfertilizing model-produced facts about Haemophilus influenzae type b and Streptococcus pneumoniae bacterial infections and the preventive public health measures against the invasive disease forms. Through the analysis, the paper shows how facts become characterised in different utilizing communities. It elaborates an account of the functional roles of facts that are capable of shaping the knowledge practices in the receiving communities. These analyses suggest how facts can travel beyond their production sites to be used as evidence in other domains.

Suggested Citation

  • Mansnerus, Erika, 2008. "What happens to facts after their construction?: characteristics and functional roles of facts in the dissemination of knowledge across modelling communities," Economic History Working Papers 22504, London School of Economics and Political Science, Department of Economic History.
  • Handle: RePEc:ehl:wpaper:22504
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/22504/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mattila, Erika, 2008. "The lives of ‘facts’: understanding disease transmission through the case of Haemophilus influenzae type b bacteria," Economic History Working Papers 22510, London School of Economics and Political Science, Department of Economic History.
    2. Howlett, Peter, 2008. "Travelling in the social science community: assessing the impact of the Indian Green Revolution across disciplines," Economic History Working Papers 22513, London School of Economics and Political Science, Department of Economic History.
    3. Cauchemez, Simon & Temime, Laura & Guillemot, Didier & Varon, Emmanuelle & Valleron, Alain-Jacques & Thomas, Guy & Boelle, Pierre-Yves, 2006. "Investigating Heterogeneity in Pneumococcal Transmission: A Bayesian MCMC Approach Applied to a Follow-up of Schools," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 946-958, September.
    4. Francesco Bartolucci, 2006. "Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 155-178, April.
    5. Mervi Eerola & Dario Gasbarra & P. Helena Mäkelä & Henri Linden & Andrei Andreev, 2003. "Joint Modelling of Recurrent Infections and Antibody Response by Bayesian Data Augmentation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 677-698, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    2. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    3. Michele Bavaro & Federico Tullio, 2023. "Intergenerational mobility measurement with latent transition matrices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 25-45, March.
    4. Sheng Luo & Ciprian M. Crainiceanu & Thomas A. Louis & Nilanjan Chatterjee, 2009. "Bayesian Inference for Smoking Cessation with a Latent Cure State," Biometrics, The International Biometric Society, vol. 65(3), pages 970-978, September.
    5. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    6. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    7. Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2019. "Uncontrolled diabetes and health care utilisation: A bivariate latent Markov model approach," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1262-1276, November.
    8. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    9. Li Donni, Paolo, 2019. "The unobserved pattern of material hardship and health among older Americans," Journal of Health Economics, Elsevier, vol. 65(C), pages 31-42.
    10. Mauro Laudicella & Paolo Li Donni, 2022. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.
    11. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    12. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    13. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    14. Kelava, Augustin & Kohler, Michael & Krzyżak, Adam & Schaffland, Tim Fabian, 2017. "Nonparametric estimation of a latent variable model," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 112-134.
    15. Cai Xiaoxuan & Loh Wen Wei & Crawford Forrest W., 2021. "Identification of causal intervention effects under contagion," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 9-38, January.
    16. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    17. Aarnoudse, E. & Closas, Alvar & Lefore, Nicole, 2018. "Water user associations: a review of approaches and alternative management options for Sub-Saharan Africa," IWMI Working Papers H048782, International Water Management Institute.
    18. Bartolucci, Francesco & Nigro, Valentina, 2007. "Maximum likelihood estimation of an extended latent Markov model for clustered binary panel data," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3470-3483, April.
    19. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    20. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.

    More about this item

    JEL classification:

    • N0 - Economic History - - General
    • Z10 - Other Special Topics - - Cultural Economics - - - General
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:wpaper:22504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager on behalf of EH Dept. (email available below). General contact details of provider: https://edirc.repec.org/data/chlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.