IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i4p677-698.html
   My bibliography  Save this article

Joint Modelling of Recurrent Infections and Antibody Response by Bayesian Data Augmentation

Author

Listed:
  • Mervi Eerola
  • Dario Gasbarra
  • P. Helena Mäkelä
  • Henri Linden
  • Andrei Andreev

Abstract

. A joint dynamic model for the interdependence between infection, immunity and risk of disease is presented. Recurrent latent infections are modelled as realizations from a renewal process and antibody dynamics as a diffusion with a decreasing drift modified by the stimulating effect of the random infections. The augmented submodels are estimated simultaneously in one large Markov chain Monte Carlo algorithm. As an example, we consider the risk of recurrent ear infections when having only partially observed information on bacterial carriage and antibody concentrations.

Suggested Citation

  • Mervi Eerola & Dario Gasbarra & P. Helena Mäkelä & Henri Linden & Andrei Andreev, 2003. "Joint Modelling of Recurrent Infections and Antibody Response by Bayesian Data Augmentation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 677-698, December.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:677-698
    DOI: 10.1111/1467-9469.00358
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00358
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Luo & Ciprian M. Crainiceanu & Thomas A. Louis & Nilanjan Chatterjee, 2009. "Bayesian Inference for Smoking Cessation with a Latent Cure State," Biometrics, The International Biometric Society, vol. 65(3), pages 970-978, September.
    2. Mansnerus, Erika, 2008. "What happens to facts after their construction?: characteristics and functional roles of facts in the dissemination of knowledge across modelling communities," Economic History Working Papers 22504, London School of Economics and Political Science, Department of Economic History.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:677-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.