IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v157y2010i1p6-17.html
   My bibliography  Save this article

Efficient estimation of the semiparametric spatial autoregressive model

Author

Listed:
  • Robinson, P.M.

Abstract

Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non-stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These estimates are as efficient as the ones based on a correct form, in particular they are more efficient than pseudo-Gaussian maximum likelihood estimates at non-Gaussian distributions. Two different adaptive estimates are considered, relying on somewhat different regularity conditions. A Monte Carlo study of finite sample performance is included.

Suggested Citation

  • Robinson, P.M., 2010. "Efficient estimation of the semiparametric spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 157(1), pages 6-17, July.
  • Handle: RePEc:eee:econom:v:157:y:2010:i:1:p:6-17
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00284-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Rudolf Beran, 1976. "Adaptive estimates for autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 28(1), pages 77-89, December.
    3. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    4. Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
    5. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    6. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    7. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    8. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    9. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    2. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    3. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    4. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    5. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    6. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    7. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    8. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    9. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    10. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    11. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    12. Haoying Wang, 2018. "Pricing used books on Amazon.com: a spatial approach to price dispersion," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 99-117, January.
    13. Gupta, A, 2015. "Nonparametric specification testing via the trinity of tests," Economics Discussion Papers 15619, University of Essex, Department of Economics.
    14. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    15. Gupta, Abhimanyu, 2018. "Nonparametric specification testing via the trinity of tests," Journal of Econometrics, Elsevier, vol. 203(1), pages 169-185.
    16. repec:esx:essedp:774 is not listed on IDEAS
    17. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    18. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    19. Jungyoon Lee & Peter M Robinson, 2018. "Adaptive Inference on Pure Spatial Models," STICERD - Econometrics Paper Series 596, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    21. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    22. Burridge, Peter & Iacone, Fabrizio & Lazarová, Štěpána, 2015. "Spatial effects in a common trend model of US city-level CPI," Regional Science and Urban Economics, Elsevier, vol. 54(C), pages 87-98.
    23. repec:esx:essedp:772 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter M Robinson, 2007. "Efficient Estimation of the SemiparametricSpatial Autoregressive Model," STICERD - Econometrics Paper Series 515, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Robinson, Peter M., 2007. "Efficient estimation of the semiparametric spatial autoregressive model," LSE Research Online Documents on Economics 4535, London School of Economics and Political Science, LSE Library.
    3. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Peter Robinson, 2006. "Efficient estimation of the semiparametric spatial autoregressive model," CeMMAP working papers CWP08/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    6. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.
    7. Haoying Wang, 2018. "Pricing used books on Amazon.com: a spatial approach to price dispersion," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 99-117, January.
    8. repec:asg:wpaper:1045 is not listed on IDEAS
    9. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    10. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    11. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    12. repec:esx:essedp:772 is not listed on IDEAS
    13. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    14. Gupta, A, 2015. "Nonparametric specification testing via the trinity of tests," Economics Discussion Papers 15619, University of Essex, Department of Economics.
    15. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    16. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    17. Mynbaev, Kairat T., 2010. "Asymptotic distribution of the OLS estimator for a mixed spatial model," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 733-748, March.
    18. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    19. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    20. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    21. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    22. Gupta, Abhimanyu, 2018. "Nonparametric specification testing via the trinity of tests," Journal of Econometrics, Elsevier, vol. 203(1), pages 169-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:157:y:2010:i:1:p:6-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.