IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v232y2023i1p244-269.html
   My bibliography  Save this article

Higher-order least squares inference for spatial autoregressions

Author

Listed:
  • Rossi, Francesca
  • Robinson, Peter M.

Abstract

We develop refined inference for spatial regression models with predetermined regressors. The ordinary least squares estimate of the spatial parameter is neither consistent nor asymptotically normal, unless the elements of the spatial weight matrix uniformly vanish as sample size diverges. We develop refined testing of the hypothesis of no spatial dependence, without requiring such negligibility of spatial weights, by formal Edgeworth expansions. We also develop such higher-order expansions for both an unstudentized and a studentized transformed estimate, where the studentized one can be used to provide refined interval estimates. A Monte Carlo study of finite sample performance is included.

Suggested Citation

  • Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
  • Handle: RePEc:eee:econom:v:232:y:2023:i:1:p:244-269
    DOI: 10.1016/j.jeconom.2022.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Federico Martellosio, 2012. "Testing for Spatial Autocorrelation: The Regressors that Make the Power Disappear," Econometric Reviews, Taylor & Francis Journals, vol. 31(2), pages 215-240.
    3. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    4. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    5. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    6. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    7. Bao, Yong, 2013. "Finite-Sample Bias Of The Qmle In Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 68-88, February.
    8. Kyriacou, Maria & Phillips, Peter C.B. & Rossi, Francesca, 2023. "Continuously Updated Indirect Inference In Heteroskedastic Spatial Models," Econometric Theory, Cambridge University Press, vol. 39(1), pages 107-145, February.
    9. Peter M. Robinson & Francesca Rossi, 2014. "Improved Lagrange multiplier tests in spatial autoregressions," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 139-164, February.
    10. Bao, Yong & Ullah, Aman, 2007. "Finite sample properties of maximum likelihood estimator in spatial models," Journal of Econometrics, Elsevier, vol. 137(2), pages 396-413, April.
    11. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    12. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.
    13. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    14. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    15. Phillips, Peter C B & Park, Joon Y, 1988. "On the Formulation of Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 56(5), pages 1065-1083, September.
    16. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    17. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    18. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    19. Liu, Shew Fan & Yang, Zhenlin, 2015. "Improved inferences for spatial regression models," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 55-67.
    20. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    21. Bao, Yong, 2013. "Finite Sample Bias Of The Qmle In Spatial Autoregressive Models – Erratum," Econometric Theory, Cambridge University Press, vol. 29(1), pages 89-89, February.
    22. Lung-fei Lee & Jihai Yu, 2012. "The C(α)-type gradient test for spatial dependence in spatial autoregressive models," Letters in Spatial and Resource Sciences, Springer, vol. 5(3), pages 119-135, October.
    23. Robinson, Peter, 2008. "Correlation testing in time series, spatial and cross-sectional data," LSE Research Online Documents on Economics 25470, London School of Economics and Political Science, LSE Library.
    24. Robinson, P.M., 2008. "Correlation testing in time series, spatial and cross-sectional data," Journal of Econometrics, Elsevier, vol. 147(1), pages 5-16, November.
    25. Maekawa, Koichi, 1985. "Edgeworth Expansion for the OLS Estimator in a Time Series Regression Model," Econometric Theory, Cambridge University Press, vol. 1(2), pages 223-239, August.
    26. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    27. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    28. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    2. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    3. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    4. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    5. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    6. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    7. Jungyoon Lee & Peter C.B. Phillips & Francesca Rossi, 2020. "Consistent Misspecification Testing in Spatial Autoregressive Models," Cowles Foundation Discussion Papers 2256, Cowles Foundation for Research in Economics, Yale University.
    8. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    9. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    10. Christoph Strumann, 2019. "Hodges–Lehmann Estimation of Static Panel Models with Spatially Correlated Disturbances," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 141-168, January.
    11. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.
    12. Federico Martellosio & Grant Hillier, 2019. "Adjusted QMLE for the spatial autoregressive parameter," Papers 1909.08141, arXiv.org.
    13. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    14. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    15. repec:esx:essedp:772 is not listed on IDEAS
    16. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    17. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    18. Kyriacou, Maria & Phillips, Peter C.B. & Rossi, Francesca, 2023. "Continuously Updated Indirect Inference In Heteroskedastic Spatial Models," Econometric Theory, Cambridge University Press, vol. 39(1), pages 107-145, February.
    19. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    20. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    21. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.

    More about this item

    Keywords

    Spatial autoregression; Least squares estimation; Higher-order inference; Edgeworth expansion; Testing spatial independence;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:232:y:2023:i:1:p:244-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.