IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v7y2012i1p75-107.html
   My bibliography  Save this article

Improving the J Test in the SARAR Model by Likelihood-based Estimation

Author

Listed:
  • Peter Burridge

Abstract

It has been demonstrated recently that in small-to-medium samples the empirical significance levels of the asymptotic J-type tests for the SARAR model introduced by Kelejian (2008) can be controlled in many cases by the use of a bootstrap to construct a reference distribution. A feature of the popular GMM estimator in this context that deserves to receive more attention is that in small samples it will often deliver spatial parameter estimates that lie outside the invertibility region of the model. Using such illegitimate estimates to construct bootstrap samples is then problematic; the present paper finds that this practical obstacle may be removed by the use of quasi-maximum likelihood estimates that guarantee invertibility. The effects of different spatial weight patterns and sample size on the empirical significance levels and power of the tests are illustrated, and the paper demonstrates that estimation using QMLE, allied to a simple bootstrap, yields tests with reliable significance levels and reasonable power, in a majority of cases. RÉSUMÉ dans des échantillons petits à moyens, il est possible, dans de nombreux cas, de contrôler les niveaux à signification empirique des tests asymptotiques introduits par Kelejian (2008) à l'aide d'un ‘bootstrap’. Dans ce contexte, une caractéristique de l'estimateur GMM, très répandu, est qu'il fournit, dans de petits échantillons, des estimations de paramètres spatiaux situés hors de la région d'inversibilité du modèle. L'emploi de telles estimations illégitimes pour la réalisation d’échantillons ‘bootstrap’ devient alors problématique; la présente communication indique que l'on peut supprimer cet obstacle pratique en utilisant le QMLE garantissant l'inversibilité. Les effets des tendances du poids spatial et la taille des échantillons sur les niveaux d'importance et la puissance sont illustrés, et la communication démontre que le QMLE, allié à un simple ‘bootstrap’, permet de réaliser des tests offrant, dans la plupart des vas, des niveaux d'importance fiables et une puissance raisonnable. EXTRACTO En muestras entre pequeñas y medianas, los niveles de significancia empírica de las pruebas asintóticas de tipo J para el modelo SARAR introducidas por Kelejian (2008) pueden controlarse en muchos casos mediante el uso de un bootstrap. Una característica del popular estimador GMM dentro de este contexto es que en las muestras pequeñas, a menudo producirá estimaciones de parámetros espaciales que están fuera de la región de reversibilidad del modelo. No obstante, el empleo de este tipo de estimaciones ilegítimas para construir muestras bootstrap es problemático; el estudio actual muestra que este obstáculo práctico puede eliminarse mediante el uso del QMLE que garantiza la reversibilidad. Se ilustran los efectos de las pautas de peso espacial y del tamaño de la muestra sobre el poder y los niveles de significancia, y el estudio demuestra que el QMLE, aliado a un bootstrap simple, dota a las pruebas de niveles de significancia fiables y de un poder razonable, en la mayoría de los casos.

Suggested Citation

  • Peter Burridge, 2012. "Improving the J Test in the SARAR Model by Likelihood-based Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 75-107, March.
  • Handle: RePEc:taf:specan:v:7:y:2012:i:1:p:75-107
    DOI: 10.1080/17421772.2011.647055
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2011.647055
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2011.647055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    3. Bernard Fingleton (ed.), 2007. "New Directions in Economic Geography," Books, Edward Elgar Publishing, number 3818.
    4. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    5. Kelejian, Harry H. & Piras, Gianfranco, 2011. "An extension of Kelejian's J-test for non-nested spatial models," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 281-292, May.
    6. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    7. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    8. Harry Kelejian, 2008. "A spatial J-test for model specification against a single or a set of non-nested alternatives," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 3-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Mur & Marcos Herrera & Manuel Ruiz, 2011. "Selecting the W Matrix. Parametric vs Nonparametric Approaches," ERSA conference papers ersa11p1055, European Regional Science Association.
    2. Paelinck, Jean & Mur, Jesús & Trivez, F. Javier, 2015. "Modelos para datos espaciales con estructura transversal o de panel. Una revisión/Models for Spatial Data with Panel or Cross-Sectional Structure. A Review," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 7-30, Enero.
    3. Masayoshi Hayashi & Wataru Yamamoto, 2017. "Information sharing, neighborhood demarcation, and yardstick competition: an empirical analysis of intergovernmental expenditure interaction in Japan," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(1), pages 134-163, February.
    4. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    5. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    6. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Zhenlin Yang, 2013. "LM Tests of Spatial Dependence Based on Bootstrap Critical Values," Working Papers 03-2013, Singapore Management University, School of Economics.
    8. Herrera Gómez, Marcos & Mur Lacambra, Jesús & Ruiz Marín, Manuel, 2011. "¿Cuál matriz de pesos espaciales?. Un enfoque sobre selección de modelos [Which spatial weighting matrix? An approach for model selection]," MPRA Paper 37585, University Library of Munich, Germany.
    9. Marcos Herrera & Jesus Mur & Manuel Ruiz-Marin, 2017. "A Comparison Study on Criteria to Select the Most Adequate Weighting Matrix," Working Papers 18, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    10. Bernard Fingleton & Silvia Palombi, 2016. "Bootstrap J -Test for Panel Data Models with Spatially Dependent Error Components, a Spatial Lag and Additional Endogenous Variables," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(1), pages 7-26, March.
    11. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    12. Marcos Herrera & Manuel Ruiz & Jesús Mur, 2013. "Detecting Dependence Between Spatial Processes," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 469-497, February.
    13. Ye Yang & Osman Dogan & Suleyman Taspinar & Fei Jin, 2023. "A Review of Cross-Sectional Matrix Exponential Spatial Models," Papers 2311.14813, arXiv.org.
    14. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    15. Nicolas Debarsy & Cem Ertur, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," Working Papers halshs-01278545, HAL.
    16. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    17. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    18. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    19. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    20. Jesus Mur & Antonio Paez, 2011. "Local weighting or the necessity of flexibility," ERSA conference papers ersa11p942, European Regional Science Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    2. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    3. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    4. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    5. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    6. Nicolas Debarsy & Cem Ertur, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," Working Papers halshs-01278545, HAL.
    7. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    8. Jin, Fei & Lee, Lung-fei, 2015. "On the bootstrap for Moran’s I test for spatial dependence," Journal of Econometrics, Elsevier, vol. 184(2), pages 295-314.
    9. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    10. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    11. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    12. repec:rri:wpaper:201303 is not listed on IDEAS
    13. Bernard Fingleton & Silvia Palombi, 2016. "Bootstrap J -Test for Panel Data Models with Spatially Dependent Error Components, a Spatial Lag and Additional Endogenous Variables," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(1), pages 7-26, March.
    14. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    15. Bernard FINGLETON & Silvia PALOMBI, 2013. "The Wage Curve Reconsidered: Is It Truly An 'Empirical Law Of Economics'?," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 38, pages 49-92.
    16. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    17. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    18. Burridge, Peter, 2011. "A research agenda on general-to-specific spatial model search," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 71-90.
    19. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    20. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.
    21. Masayoshi Hayashi & Wataru Yamamoto, 2017. "Information sharing, neighborhood demarcation, and yardstick competition: an empirical analysis of intergovernmental expenditure interaction in Japan," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(1), pages 134-163, February.
    22. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:7:y:2012:i:1:p:75-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.