IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/2130.html
   My bibliography  Save this paper

Edgeworth expansions for semiparametric Whittle estimation of long memory

Author

Listed:
  • Giraitis, Liudas
  • Robinson, Peter

Abstract

The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.

Suggested Citation

  • Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:2130
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/2130/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    2. Clifford M. Hurvich & Julia Brodsky, 2001. "Broadband Semiparametric Estimation of the Memory Parameter of a Long‐Memory Time Series Using Fractional Exponential Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 221-249, March.
    3. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
    4. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    5. Liudas Giraitis & Peter M Robinson & Alexander Samarov, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter - (Now published with revised title, Adaptive Rate-Optimal Estimation of the Memory Parameter, in Journal of Multivariate Analysis, 72 (2000)," STICERD - Econometrics Paper Series 379, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    7. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    8. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    9. Liudas Giraitis & Peter M. Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation Of The Memory Parameter Of The Gaussian Time Series With Long‐Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(1), pages 49-60, January.
    10. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    11. Lieberman, Offer & Rousseau, Judith & Zucker, David M., 2001. "Valid Edgeworth Expansion For The Sample Autocorrelation Function Under Long Range Dependence," Econometric Theory, Cambridge University Press, vol. 17(1), pages 257-275, February.
    12. Robinson, P. M., 1995. "The approximate distribution of nonparametric regression estimates," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 193-201, May.
    13. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive semiparametric estimation of the memory parameter," LSE Research Online Documents on Economics 2082, London School of Economics and Political Science, LSE Library.
    14. Donald W.K. Andrews & Yixiao Sun, 2001. "Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1293, Cowles Foundation for Research in Economics, Yale University.
    15. Clifford M. Hurvich, 2001. "Model Selection for Broadband Semiparametric Estimation of Long Memory in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 679-709, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    3. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    4. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    5. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    6. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    7. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
    8. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    9. Josu Arteche & Jesus Orbe, 2009. "Bootstrap‐based bandwidth choice for log‐periodogram regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 591-617, November.
    10. repec:ehu:biltok:5585 is not listed on IDEAS
    11. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    12. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    13. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
    14. Grace Yap & Wen Cheong Chin, 2016. "Spectral bandwidth selection for long memory," Modern Applied Science, Canadian Center of Science and Education, vol. 10(8), pages 1-63, August.
    15. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    16. repec:ehu:biltok:5570 is not listed on IDEAS
    17. Saeed Heravi & Kerry Patterson, 2005. "Optimal And Adaptive Semi‐Parametric Narrowband And Broadband And Maximum Likelihood Estimation Of The Long‐Memory Parameter For Real Exchange Rates," Manchester School, University of Manchester, vol. 73(2), pages 165-213, March.
    18. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    19. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    20. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    21. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    22. Kanchana Nadarajah & Gael M Martin & Donald S Poskitt, 2019. "Optimal Bias Correction of the Log-periodogram Estimator of the Fractional Parameter: A Jackknife Approach," Monash Econometrics and Business Statistics Working Papers 7/19, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    Edgeworth expansion; long memory; semiparametric estimation;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:2130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.