IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1293.html
   My bibliography  Save this paper

Local Polynomial Whittle Estimation of Long-range Dependence

Author

Abstract

The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to circumvent those problems. Instead of approximating the short-run component of the spectrum, phi(lambda), by a constant in a shrinking neighborhood of frequency zero, we approximate its logarithm by a polynomial. This leads to a "local polynomial Whittle" (LPW) estimator. Following the work of Robinson (1995a), we establish the asymptotic bias, variance, mean-squared error (MSE), and normality of the LPW estimator. We determine the asymptotically MSE-optimal bandwidth, and specify a plug-in selection method for its practical implementation. When phi(lambda) is smooth enough near the origin, we find that the bias of the LPW estimator goes to zero at a faster rate than that of the local Whittle estimator, and its variance is only inflated by a multiplicative constant. In consequence, the rate of convergence of the LPW estimator is faster than that of the local Whittle estimator, given an appropriate choice of the bandwidth m. We show that the LPW estimator attains the optimal rate of convergence for a class of spectra containing those for which varphi(lambda) is smooth of order s > 1 near zero. When phi(lambda) is infinitely smooth near zero, the rate of convergence of the LPW estimator based on a polynomial of high degree is arbitrarily close to n^{-1/2}.

Suggested Citation

  • Donald W.K. Andrews & Yixiao Sun, 2001. "Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1293, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1293
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d12/d1293.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    2. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    3. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    4. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    5. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    7. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    8. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    9. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.

    More about this item

    Keywords

    Asymptotic bias; asymptotic normality; bias reduction; long memory; minimax rate; optimal bandwidth; Whittle likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.