IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/114637.html
   My bibliography  Save this paper

Finite sample theory for high-dimensional functional/scalar time series with applications

Author

Listed:
  • Fang, Qin
  • Guo, Shaojun
  • Qiao, Xinghao

Abstract

Statistical analysis of high-dimensional functional times series arises in various applications. Under this scenario, in addition to the intrinsic infinite-dimensionality of functional data, the number of functional variables can grow with the number of serially dependent observations. In this paper, we focus on the theoretical analysis of relevant estimated cross-(auto)covariance terms between two multivariate functional time series or a mixture of multivariate functional and scalar time series beyond the Gaussianity assumption. We introduce a new perspective on dependence by proposing functional cross-spectral stability measure to characterize the effect of dependence on these estimated cross terms, which are essential in the estimates for additive functional linear regressions. With the proposed functional cross-spectral stability measure, we develop useful concentration inequalities for estimated cross-(auto)covariance matrix functions to accommodate more general sub-Gaussian functional linear processes and, furthermore, establish finite sample theory for relevant estimated terms under a commonly adopted functional principal component analysis framework. Using our derived non-asymptotic results, we investigate the convergence properties of the regularized estimates for two additive functional linear regression applications under sparsity assumptions including functional linear lagged regression and partially functional linear regression in the context of high-dimensional functional/scalar time series.

Suggested Citation

  • Fang, Qin & Guo, Shaojun & Qiao, Xinghao, 2022. "Finite sample theory for high-dimensional functional/scalar time series with applications," LSE Research Online Documents on Economics 114637, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:114637
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/114637/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
    3. Gao, Zhaoxing & Ma, Yingying & Wang, Hansheng & Yao, Qiwei, 2019. "Banded spatio-temporal autoregressions," Journal of Econometrics, Elsevier, vol. 208(1), pages 211-230.
    4. Siegfried Hörmann & Łukasz Kidziński & Piotr Kokoszka, 2015. "Estimation in Functional Lagged Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 541-561, July.
    5. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    6. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    7. Xinghao Qiao & Shaojun Guo & Gareth M. James, 2019. "Functional Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 211-222, January.
    8. Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
    9. Xinghao Qiao & Cheng Qian & Gareth M James & Shaojun Guo, 2020. "Doubly functional graphical models in high dimensions," Biometrika, Biometrika Trust, vol. 107(2), pages 415-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    2. Jinyuan Chang & Qin Fang & Xinghao Qiao & Qiwei Yao, 2024. "On the modelling and prediction of high-dimensional functional time series," Papers 2406.00700, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    2. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    3. Maeng, Hye Young & Fryzlewicz, Piotr, 2019. "Regularised forecasting via smooth-rough partitioning of the regression coefficients," LSE Research Online Documents on Economics 100878, London School of Economics and Political Science, LSE Library.
    4. Guo, Shaojun & Qiao, Xinghao, 2023. "On consistency and sparsity for high-dimensional functional time series with application to autoregressions," LSE Research Online Documents on Economics 114638, London School of Economics and Political Science, LSE Library.
    5. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
    6. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    8. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    9. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    10. Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019. "Functional GARCH models: The quasi-likelihood approach and its applications," Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
    11. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
    13. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    14. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    15. Israel Martínez‐Hernández & Marc G. Genton, 2021. "Nonparametric trend estimation in functional time series with application to annual mortality rates," Biometrics, The International Biometric Society, vol. 77(3), pages 866-878, September.
    16. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
    18. Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2022. "Bayesian Testing of Granger Causality in Functional Time Series," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 191-210, September.
    19. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.
    20. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    21. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    22. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.

    More about this item

    Keywords

    cross-spectral stability measure; functional linear regression; functional principal component analysis; non-asymptotics; sub-Gaussian functional linear process; sparsity;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:114637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.