IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p415-431..html
   My bibliography  Save this article

Doubly functional graphical models in high dimensions

Author

Listed:
  • Xinghao Qiao
  • Cheng Qian
  • Gareth M James
  • Shaojun Guo

Abstract

Summary We consider estimating a functional graphical model from multivariate functional observations. In functional data analysis, the classical assumption is that each function has been measured over a densely sampled grid. However, in practice the functions have often been observed, with measurement error, at a relatively small number of points. We propose a class of doubly functional graphical models to capture the evolving conditional dependence relationship among a large number of sparsely or densely sampled functions. Our approach first implements a nonparametric smoother to perform functional principal components analysis for each curve, then estimates a functional covariance matrix and finally computes sparse precision matrices, which in turn provide the doubly functional graphical model. We derive some novel concentration bounds, uniform convergence rates and model selection properties of our estimator for both sparsely and densely sampled functional data in the high-dimensional large-$p$, small-$n$ regime. We demonstrate via simulations that the proposed method significantly outperforms possible competitors. Our proposed method is applied to a brain imaging dataset.

Suggested Citation

  • Xinghao Qiao & Cheng Qian & Gareth M James & Shaojun Guo, 2020. "Doubly functional graphical models in high dimensions," Biometrika, Biometrika Trust, vol. 107(2), pages 415-431.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:415-431.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz072
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shaojun & Qiao, Xinghao, 2023. "On consistency and sparsity for high-dimensional functional time series with application to autoregressions," LSE Research Online Documents on Economics 114638, London School of Economics and Political Science, LSE Library.
    2. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    4. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    5. Fang, Qin & Guo, Shaojun & Qiao, Xinghao, 2022. "Finite sample theory for high-dimensional functional/scalar time series with applications," LSE Research Online Documents on Economics 114637, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:415-431.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.