Integrating long-term economic scenarios into peak load forecasting: An application to Spain
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.08.113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pérez-García, Julián & Moral-Carcedo, Julián, 2016.
"Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain,"
Energy, Elsevier, vol. 97(C), pages 127-143.
- Pérez García, Julián & Moral Carcedo, Julián, 2015. "Analysis and long term forecasting of electricity demand through a decomposition model: A case study for Spain," Working Papers in Economic Theory 2015/07, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
- Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
- Badurally Adam, N.R. & Elahee, M.K. & Dauhoo, M.Z., 2011. "Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process," Energy, Elsevier, vol. 36(12), pages 6763-6769.
- Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
- Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
- Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
- Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006.
"Forecasting electricity demand using generalized long memory,"
International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
- Soares, Lacir Jorge & Souza, Leonardo Rocha, 2003. "Forecasting electricity demand using generalized long memory," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 486, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
- Moral-Carcedo, Julián & Pérez-García, Julián, 2015.
"Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain,"
Applied Energy, Elsevier, vol. 142(C), pages 407-425.
- Moral Carcedo, Julián & Pérez García, Julián, 2015. "Temperature Effects on Firms’ Electricity Demand: An Analysis of Sectorial Differences in Spain," Working Papers in Economic Theory 2015/01, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
- Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
- Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
- Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
- Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
- Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
- Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
- Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
- J. C. G. Boot & W. Feibes & J. H. C. Lisman, 1967. "Further Methods of Derivation of Quarterly Figures from Annual Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(1), pages 65-75, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jannik Schütz Roungkvist & Peter Enevoldsen & George Xydis, 2020. "High-Resolution Electricity Spot Price Forecast for the Danish Power Market," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
- Colelli, Francesco Pietro & Wing, Ian Sue & De Cian, Enrica, 2023. "Intensive and extensive margins of the peak load: Measuring adaptation with mixed frequency panel data," Energy Economics, Elsevier, vol. 126(C).
- Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
- Soto Calvo, Manuel & Lee, Han Soo & Chisale, Sylvester William, 2024. "A novel method for long-term power demand prediction using enhanced data decomposition and neural network with integrated uncertainty analysis: A Cuba case study," Applied Energy, Elsevier, vol. 372(C).
- Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
- Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, vol. 11(12), pages 1-19, November.
- Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Kalhori, M. Rostam Niakan & Emami, I. Taheri & Fallahi, F. & Tabarzadi, M., 2022. "A data-driven knowledge-based system with reasoning under uncertain evidence for regional long-term hourly load forecasting," Applied Energy, Elsevier, vol. 314(C).
- Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
- Mohammed, Nooriya A., 2018. "Modelling of unsuppressed electrical demand forecasting in Iraq for long term," Energy, Elsevier, vol. 162(C), pages 354-363.
- Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
- Chapaloglou, Spyridon & Nesiadis, Athanasios & Iliadis, Petros & Atsonios, Konstantinos & Nikolopoulos, Nikos & Grammelis, Panagiotis & Yiakopoulos, Christos & Antoniadis, Ioannis & Kakaras, Emmanuel, 2019. "Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system," Applied Energy, Elsevier, vol. 238(C), pages 627-642.
- Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
- Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Bessec, Marie & Fouquau, Julien, 2018.
"Short-run electricity load forecasting with combinations of stationary wavelet transforms,"
European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
- Marie Bessec & Julien Fouquau, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," Post-Print hal-01644930, HAL.
- Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
- Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
- Brenda López Cabrera & Franziska Schulz, 2017.
"Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
- López Cabrera, Brenda & Schulz, Franziska, 2014. "Forecasting generalized quantiles of electricity demand: A functional data approach," SFB 649 Discussion Papers 2014-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
- repec:cte:wsrepe:ws1506 is not listed on IDEAS
- Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
- Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
- Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
- Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
- Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
- Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
- Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
- Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
More about this item
Keywords
Peak load forecasting; Load curve forecasting; Long-term scenarios; Temporal disaggregation;All these keywords.
JEL classification:
- Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:682-695. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.