IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v25y2009i03p793-805_09.html
   My bibliography  Save this article

Optimal Invariant Inference When The Number Of Instruments Is Large

Author

Listed:
  • Chioda, Laura
  • Jansson, Michael

Abstract

This paper studies the asymptotic behavior of a Gaussian linear instrumental variables model in which the number of instruments diverges with the sample size. Asymptotic efficiency bounds are obtained for rotation invariant inference procedures and are shown to be attainable by procedures based on the limited information maximum likelihood estimator. The bounds are obtained by characterizing the limiting experiment associated with the model induced by the rotation invariance restriction.

Suggested Citation

  • Chioda, Laura & Jansson, Michael, 2009. "Optimal Invariant Inference When The Number Of Instruments Is Large," Econometric Theory, Cambridge University Press, vol. 25(3), pages 793-805, June.
  • Handle: RePEc:cup:etheor:v:25:y:2009:i:03:p:793-805_09
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466608090300/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    3. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    4. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    5. Michal Kolesár, 2013. "Estimation in an Instrumental Variables Model With Treatment Effect Heterogeneity," Working Papers 2013-2, Princeton University. Economics Department..
    6. Marc Hallin & Marcelo Moreira J. & Alexei Onatski, 2013. "Group Invariance, Likelihood Ratio Tests, and the Incidental Parameter Problem in a High-Dimensional Linear Model," Working Papers ECARES ECARES 2013-04, ULB -- Universite Libre de Bruxelles.
    7. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    8. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," Journal of Econometrics, Elsevier, vol. 232(2), pages 346-366.
    9. Marcelo Moreira, 2008. "A Maximum Likelihood Method for the Incidental Parameter Problem," NBER Working Papers 13787, National Bureau of Economic Research, Inc.
    10. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
    11. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:03:p:793-805_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.