IDEAS home Printed from https://ideas.repec.org/p/dur/durham/2017_11.html
   My bibliography  Save this paper

Nondictatorial Arrovian Social Welfare Functions, Simple Majority Rule and Integer Programming

Author

Listed:
  • Francesca Busetto

    (Universit`a degli Studi di Udine)

  • Giulio Codognato

    (Universit`a degli Studi di Udine)

  • Simone Tonin

    (Durham Business School)

Abstract

In this paper, we use the linear programming approach to mechanism design, rst introduced by Sethuraman et al. (2003) and then systematized by Vohra (2011), to analyze nondictatorial Arrovian social welfare functions with and without ties. First, we provide a new and simpler proof of Theorem 2 in Kalai and Muller (1977), which characterizes the domains admitting nondictatorial Arrovian social welfare functions without ties. Then, we show that a domain containing an inseparable ordered pair admits nondictatorial Arrovian social welfare functions with ties, thereby strengthening a result previously obtained by Kalai and Ritz (1978). Finally, we propose a reformulation of the simple majority rule in the framework of integer programming with an odd or even number of agents. We use this reformulation to recast some celebrated theorems, proved by Arrow (1963), Sen (1966), and Inada (1969), which provide conditions guaranteeing that the simple majority rule is a nondictatorial Arrovian social welfare function.

Suggested Citation

  • Francesca Busetto & Giulio Codognato & Simone Tonin, 2017. "Nondictatorial Arrovian Social Welfare Functions, Simple Majority Rule and Integer Programming," Department of Economics Working Papers 2017_11, Durham University, Department of Economics.
  • Handle: RePEc:dur:durham:2017_11
    as

    Download full text from publisher

    File URL: https://www.dur.ac.uk/resources/business/working-papers/EconWP17_11.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inada, Ken-Ichi, 1969. "The Simple Majority Decision Rule," Econometrica, Econometric Society, vol. 37(3), pages 490-506, July.
    2. Jay Sethuraman & Teo Chung Piaw & Rakesh V. Vohra, 2003. "Integer Programming and Arrovian Social Welfare Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 309-326, May.
    3. Blair, Douglas & Muller, Eitan, 1983. "Essential aggregation procedures on restricted domains of preferences," Journal of Economic Theory, Elsevier, vol. 30(1), pages 34-53, June.
    4. Francesca Busetto & Giulio Codognato & Simone Tonin, 2015. "Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach," Studies in Choice and Welfare, in: Constanze Binder & Giulio Codognato & Miriam Teschl & Yongsheng Xu (ed.), Individual and Collective Choice and Social Welfare, edition 127, pages 149-169, Springer.
    5. Gaertner,Wulf, 2006. "Domain Conditions in Social Choice Theory," Cambridge Books, Cambridge University Press, number 9780521028745, September.
    6. Ritz, Zvi, 1983. "Restricted domains, arrow-social welfare functions and noncorruptible and non-manipulable social choice correspondences: The case of private alternatives," Mathematical Social Sciences, Elsevier, vol. 4(2), pages 155-179, April.
    7. Sethuraman, Jay & Teo, Chung-Piaw & Vohra, Rakesh V., 2006. "Anonymous monotonic social welfare functions," Journal of Economic Theory, Elsevier, vol. 128(1), pages 232-254, May.
    8. Kalai, Ehud & Muller, Eitan, 1977. "Characterization of domains admitting nondictatorial social welfare functions and nonmanipulable voting procedures," Journal of Economic Theory, Elsevier, vol. 16(2), pages 457-469, December.
    9. Constanze Binder & Giulio Codognato & Miriam Teschl & Yongsheng Xu, 2015. "Individual and Collective Choice and Social Welfare," Post-Print hal-01457320, HAL.
    10. Kalai, Ehud & Ritz, Zvi, 1980. "Characterization of the private alternatives domains admitting arrow social welfare functions," Journal of Economic Theory, Elsevier, vol. 22(1), pages 23-36, February.
    11. Ritz, Zvi, 1985. "Restricted domains, arrow social welfare functions and noncorruptible and nonmanipulable social choice correspondences: The case of private and public alternatives," Journal of Economic Theory, Elsevier, vol. 35(1), pages 1-18, February.
    12. Kim, Ki Hang & Roush, Fred W., 1981. "Effective nondictatorial domains," Journal of Economic Theory, Elsevier, vol. 24(1), pages 40-47, February.
    13. Constanze Binder & Giulio Codognato & Miriam Teschl & Yongsheng Xu (ed.), 2015. "Individual and Collective Choice and Social Welfare," Studies in Choice and Welfare, Springer, edition 127, number 978-3-662-46439-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2018. "Integer programming on domains containing inseparable ordered pairs," Research in Economics, Elsevier, vol. 72(4), pages 428-434.
    2. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Integer Programming on Domains Containing Inseparable Ordered Paris," SIRE Discussion Papers 2015-22, Scottish Institute for Research in Economics (SIRE).
    3. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Integer Programming on Domains Containing Inseparable Ordered Paris," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-22, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Francesca Busetto & Giulio Codognato & Simone Tonin, 2014. "Integer Programming on Domains Containg Inseparable Ordered Pairs," Working Papers 2014_14, Business School - Economics, University of Glasgow.
    5. Francesca Busetto & Giulio Codognato & Simone Tonin, 2018. "Kalai and Muller’s possibility theorem: a simplified integer programming version," Review of Economic Design, Springer;Society for Economic Design, vol. 22(3), pages 149-157, December.
    6. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2021. "Simple majority rule and integer programming," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 160-163.
    7. Isaac Lara & Sergio Rajsbaum & Armajac Ravent'os-Pujol, 2024. "A Generalization of Arrow's Impossibility Theorem Through Combinatorial Topology," Papers 2402.06024, arXiv.org, revised Jul 2024.
    8. Francesca Busetto & Giulio Codognato & Simone Tonin, 2012. "Integer Programming and Nondictatorial Arrovian Social Welfare Functions," Working Papers hal-04141048, HAL.
    9. Clemens Puppe & Attila Tasnádi, 2008. "Nash implementable domains for the Borda count," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(3), pages 367-392, October.
    10. Georges Bordes & Peter J. Hammond & Michel Le Breton, 2005. "Social Welfare Functionals on Restricted Domains and in Economic Environments," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 7(1), pages 1-25, February.
    11. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach," SIRE Discussion Papers 2015-21, Scottish Institute for Research in Economics (SIRE).
    12. Sethuraman, Jay & Teo, Chung-Piaw & Vohra, Rakesh V., 2006. "Anonymous monotonic social welfare functions," Journal of Economic Theory, Elsevier, vol. 128(1), pages 232-254, May.
    13. Roy, Souvik & Storcken, Ton, 2019. "A characterization of possibility domains in strategic voting," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 46-55.
    14. Francesca Busetto & Giulio Codognato & Simone Tonin, 2014. "Nondictatorial Arrovian Social Welfare Functions An Integer Programming Approach," Working Papers 2014_13, Business School - Economics, University of Glasgow.
    15. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-21, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Anne van den Nouweland & Agnieszka Rusinowska, 2020. "Bargaining foundation for ratio equilibrium in public‐good economies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(2), pages 302-319, April.
    17. Ehlers, Lars & Storcken, Ton, 2009. "Oligarchies in spatial environments," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 250-256, March.
    18. A. van den Nouweland, 2019. "Demand for public good as a correspondence of cost shares," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 155-164, May.
    19. Francesca Busetto & Giulio Codognato & Simone Tonin, 2012. "Integer Programming and Nondictatorial Arrovian Social Welfare Functions," EconomiX Working Papers 2012-36, University of Paris Nanterre, EconomiX.
    20. Fasil Alemante & Donald E. Campbell & Jerry S. Kelly, 2016. "Characterizing the resolute part of monotonic social choice correspondences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(4), pages 765-783, October.

    More about this item

    Keywords

    Social Welfare Function; Simple Majority Rule; Integer Programming;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dur:durham:2017_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tatiana Damjanovic (email available below). General contact details of provider: https://edirc.repec.org/data/deduruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.