IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/609.html
   My bibliography  Save this paper

Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach

Author

Listed:
  • Busetto, Francesca
  • Codognato, Giulio
  • Tonin, Simone

Abstract

In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.

Suggested Citation

  • Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach," SIRE Discussion Papers 2015-21, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:609
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/609
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jay Sethuraman & Teo Chung Piaw & Rakesh V. Vohra, 2003. "Integer Programming and Arrovian Social Welfare Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 309-326, May.
    2. Sethuraman, Jay & Teo, Chung-Piaw & Vohra, Rakesh V., 2006. "Anonymous monotonic social welfare functions," Journal of Economic Theory, Elsevier, vol. 128(1), pages 232-254, May.
    3. Kalai, Ehud & Muller, Eitan, 1977. "Characterization of domains admitting nondictatorial social welfare functions and nonmanipulable voting procedures," Journal of Economic Theory, Elsevier, vol. 16(2), pages 457-469, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Busetto & Giulio Codognato & Simone Tonin, 2018. "Kalai and Muller’s possibility theorem: a simplified integer programming version," Review of Economic Design, Springer;Society for Economic Design, vol. 22(3), pages 149-157, December.
    2. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2018. "Integer programming on domains containing inseparable ordered pairs," Research in Economics, Elsevier, vol. 72(4), pages 428-434.
    3. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Integer Programming on Domains Containing Inseparable Ordered Paris," SIRE Discussion Papers 2015-22, Scottish Institute for Research in Economics (SIRE).
    4. Francesca Busetto & Giulio Codognato & Simone Tonin, 2012. "Integer Programming and Nondictatorial Arrovian Social Welfare Functions," Working Papers hal-04141048, HAL.
    5. Francesca Busetto & Giulio Codognato & Simone Tonin, 2017. "Nondictatorial Arrovian Social Welfare Functions, Simple Majority Rule and Integer Programming," Department of Economics Working Papers 2017_11, Durham University, Department of Economics.
    6. Francesca Busetto & Giulio Codognato & Simone Tonin, 2014. "Nondictatorial Arrovian Social Welfare Functions An Integer Programming Approach," Working Papers 2014_13, Business School - Economics, University of Glasgow.
    7. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Integer Programming on Domains Containing Inseparable Ordered Paris," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-22, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2014. "Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-21, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Francesca Busetto & Giulio Codognato & Simone Tonin, 2014. "Integer Programming on Domains Containg Inseparable Ordered Pairs," Working Papers 2014_14, Business School - Economics, University of Glasgow.
    10. Ehlers, Lars & Storcken, Ton, 2009. "Oligarchies in spatial environments," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 250-256, March.
    11. Francesca Busetto & Giulio Codognato & Simone Tonin, 2012. "Integer Programming and Nondictatorial Arrovian Social Welfare Functions," EconomiX Working Papers 2012-36, University of Paris Nanterre, EconomiX.
    12. Ehlers, Lars & Storcken, Ton, 2008. "Arrow's Possibility Theorem for one-dimensional single-peaked preferences," Games and Economic Behavior, Elsevier, vol. 64(2), pages 533-547, November.
    13. Busetto, Francesca & Codognato, Giulio & Tonin, Simone, 2021. "Simple majority rule and integer programming," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 160-163.
    14. Berga, Dolors & Serizawa, Shigehiro, 2000. "Maximal Domain for Strategy-Proof Rules with One Public Good," Journal of Economic Theory, Elsevier, vol. 90(1), pages 39-61, January.
    15. Sethuraman, Jay & Teo, Chung-Piaw & Vohra, Rakesh V., 2006. "Anonymous monotonic social welfare functions," Journal of Economic Theory, Elsevier, vol. 128(1), pages 232-254, May.
    16. Roy, Souvik & Storcken, Ton, 2019. "A characterization of possibility domains in strategic voting," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 46-55.
    17. Ehud Kalai & Zvi Ritz, 1978. "An Extended Single Peak Condition in Social Choice," Discussion Papers 325, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    18. Clemens Puppe & Attila Tasnádi, 2008. "Nash implementable domains for the Borda count," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(3), pages 367-392, October.
    19. Teo Chung Piaw & Jay Sethuraman & Rakesh V. Vohra, 2001. "Integer Programming and Arrovian Social Welfare Functions," Discussion Papers 1316, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Mishra, Debasis, 2016. "Ordinal Bayesian incentive compatibility in restricted domains," Journal of Economic Theory, Elsevier, vol. 163(C), pages 925-954.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/sireeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.